Akademija tehniCko-vaspitackih strukovnih studija
NiS

Predmet: Klijent server sistemi

Uputstvo za izradu projekta u Vue.js radnom okviru

NiS, oktobar 2024.

Sadrzaj

O |4 = o [N o] (o] =] (¢ U 2
VUELJS TAANT OKVIT ...ttt e e e e r et e e e e e s et bn e e e e e e e e e aans 2
1. Inicijalizacija, konfiguracija projekta i instalacija biblioteka...........ccccccccoooeeiriinininnnn. 3

1.1 Koraci za konfiguraciju Projekialcooooooo oo 3
2. Princip rada VUEB.JS-a ...c.coooi i 10
2.1 Glavne komponente i objaSnjenje strukture u Vue.js projektucccccceeeee. 10
3. Kilijent server arhitektura.............ccooe i 14
T I o 1= Ty I - P 14
3.2 Pojam AULENTITIKACIEvveiiiieeiiiiie e 17
3.2.1 Autentifikacija kolaci¢ima (engl. Cookie authentication)..............cccccvvvvvninnns 17
3.2.2 JWT Autentifikacija (engl. JISON Web Token authentication) 18

O b = To £ =T 111 = U | = RPN 21
4.1 1zgled aplikacije, StraniCe i FULEoovviiiiiiiiieeeeeeee e 21
4.2 Razdvajanje U KOMPONENTE............covviiiiiiiiiiiiiieei ettt eeeee e e eeeeeeeeeesaeeeaeneees 24
5. Kreiranje komponenti i stranice za login ... 25
5.1 VIEWS/LOQINWUE ... 25
5.2 componentsS/Navhar.VUEouuiiiii e 31
5.3 components/TableCOoNtAINEI.VUEccouiiiiiiiiiiiieeee e 37
5.4 components/FOrmMCONTAINEI.VUEcceeieeeiiiiii i e e e e eeeeetiees e e e e e e eetr e e e e e e e eennean s 41
5.5 components/DeleteMOdal.VUE............oooiiiiiiiiiiiiicee e 41
6. Kreiranje stranica za manipulaciju KOrisSniCima..........ccceuuiieiiiieerieeeiiiie e eeee e, 50
6.1 VIEWS/KOFISNIKNOVI.LVUEcooiiiiiiiiiiiiiee ettt e e e s 50
6.2 VieWS/KOFSNIKIZMENA.VUEooiiiiiiiiiie et 55
6.3 VIEWS/KOFISIICI. VUeeiieiieeiiiiiiit ettt e et e e e e e e e s e e e e e e e e aannes 61

LITERATURA ., 67

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

Klijent server sistemi

Uputstvo za izradu projekta u Vue.js radnom
okviru

Cilj izrade projekta

Upoznavanje studenata sa osnovama komunikacije izmedu klijenta i servera, kroz
implementaciju REST API-ja (engl. Representational State Transfer Application
Programming Interface)

Razumevanje kako se koristi Vue.js za kreiranje dinami€nih korisnickih interfejsa i
upravljanje stanjem aplikacije.

Savladavanje rada sa HTTP (engl. Hypertext Transfer Protocol) metodama putem
biblioteke Axios, u kontekstu Vue.js aplikacija.

Ucenje kako pravilno organizovati reusable komponente u Vue.js-u, s ciljem smanjenja
ponavljanja koda i poboljSanja modularnosti aplikacije.

Savladvanje Bootstrap-a za kreiranje responzivnih korisni¢kih interfejsa, ukljuujudi
rad sa modalima i formama.

Primena koncepata upravljanja stanjem u Vue.js-u kroz "ref" i "props"” sisteme, radi
efikasnog prenosa podataka izmedu komponenti.

Vue.js radni okvir

Vue.js je progresivni JavaScript radni okvir za izradu korisnickih interfejsa i jednostrani¢nih
aplikacija SPA (engl. Single Page Application). Kreiran je 2014. godine od strane Evana You-
a, kao laksa i fleksibilnija alternativa za druge popularne radne okvire poput Angular-a i React-
a. Vue.js omogucéava modularnu izgradnju aplikacija putem komponentnog pristupa, gde se
logika i prezentacija lako razdvajaju. Posebno je cenjen zbog jednostavne integracije u
postojece projekte i mogucnosti postepenog usvajanja, sto ga €ini pogodnim za projekte svih
veli€ina.

Sl. Vue.js logotip

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

1. Inicijalizacija, konfiguracija projekta i instalacija biblioteka

Zadatak je izrada frontend dela veb aplikacije u kojoj profesori vode evidenciju o studentima,
predmetima i ocenama. Od funkcionalnosti je potrebno da ima login, logout, kreiranje,
iSCitavanje, izmenu i brisanje studenata, predmeta, ocena i profesora (u daljem tekstu
korisnici). Za izradu, neophodna je instalacija odredenih alata i biblioteka, kao i uraden
projekat u Flask radnom okviru (predmet Veb programiranje), modifikovan u backend API.
e Link do Evidencija studenata Flask API-ja: https://github.com/nevence/Klijent-Server-
Sistemi-Evidencija-studenata/tree/main/flask-api

1.1 Koraci za konfiguraciju projekta

1. Instalacija Node.js-a

e Node.js je okruzenje koje omoguéava pokretanje JavaScript koda van pretrazivaca.
Za rad sa Vue.js, Node.js je neophodan jer omogucava instalaciju paketa i pokretanje
lokalnog servera. MogucCe ga je instalirati na zvanicnhom Node.js sajtu:
https://nodejs.org/en/download/prebuilt-installer

e Naslici 1.1 prikazana je zvani€na stranica za preuzimanje Node.js-a sa moguénostima
odabira Zeljene verzije, kao i operativnog sistema. Nakon skidanja Zeljene instalacije,
potrebno ju je pokrenuti, | ispratiti korake kroz instalacioni €arobnjak. Na slici 2
prikazan je poCetak instalacije.

ny dc Learn About Download Blog Dacs Certification A

Download Node.js®

Download Node.js the way you want.

Package Manager Prebuilt Installer Prebuilt Binaries Source Cudd

| want the v20.17.0 (LTS) v | version of Node,js for & Windows | running | x4

& Download Node.js v20.17.0

Node.js includes npm (10.8
Read the changelog for
Read the blog post for

Learn how to verify sig
Check out all available Node.|

Learn about Node.js Releases 2

Sl. 1.1 Zvanicni sajt za preuzimanje Node.js-a

https://github.com/nevence/Klijent-Server-Sistemi-Evidencija-studenata/tree/main/flask-api
https://github.com/nevence/Klijent-Server-Sistemi-Evidencija-studenata/tree/main/flask-api
https://nodejs.org/en/download/prebuilt-installer

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

15 Nodejs Setup — X

Welcome to the Node.js Setup Wizard

Please wait while the Setup Wizard prepares to guide you

n \. d e through the installation.
r-.

IC] Computing space requirements
J<

NS

Cancel

Sl. 1.2 Pokretanje instalacije Node.js-a

2. Kreiranje novog Vue.js projekta pomoéu Vite-a
e Potrebno je otvoriti Command prompt, navigirati do Desktop-a i pokrenuti komandu:

npm create vue@latest evidencija_studenata

e Za instaliranje dodatnih zavisnosti, odabrati samo Vue Router, koji ¢e sluziti za
rutiranje i navigaciju ka stranicama.
e Pokrenuti komande iz konzole za instalaciju:

cd evidencija_studenata
npm install

e Na slici 1.3 prikazana je konzola sa pokrenutim potrebnim komandama radi kreiranja
projekta.

™ Command Prompt

Microsoft Windows [Version 16.0.22631.4169]
(c) Microsoft Corporation. ALl rights reserved.

C:\Users\neven>cd Deshtop
C:\Users\neven\Desktop>npm create vue@latest evidencija_studenata

> npx
> create-vue evidencija_studenata

js = The P pt Frame

Add TypeScript? Yes

Add JSX Support? Yes

Add Vue Router for Single Page Application development?
Add Pinia for state management? Yes

Add Vitest for Unit Testing? CH

Add an End-to-End Testing Solution? » No

Add ESLint for code quality? Yes

Add Vue DevTools 7 extension for debugging? (experimental)

Scaffolding project in C:\Users\neven\Desktop\evidencija_studenata...

Done. Now run:

Sl. 1.3 Kreiranje Vue.js projekta

4

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

3. Instalacija potrebnih biblioteka:
e Nakon instalacije projekta, potrebno je instalirati Axios biblioteku za slanje HTTP
zahteva pokretanjem komande u istoj konzoli:

npm install axios

e Za prikazivanje notifikacija u aplikaciji, potrebno je instalirati Vue 3 Toastify biblioteku
pokretanjem komande:

npm install vue3-toastify

e Naslici 1.4 prikazan je izgled konzole sa pokrenutim svim potrebnim komandama radi
intaliranja projekta I svih potrebnih biblioteka.

= command Prompt

C:\Users\neven\Desktop\evidencija_studenata>npm install

added 33 packages, and audited 34 packages in 9s

5 packages are looking for funding
run ‘npm fund' for details

found @ vulnerabilities
C:\Users\neven\Desktop\evidencija_studenata>npm install axios
added 9 packages, and audited U3 packages in 2s

6 packages are looking for funding
run ‘npm fund' for details

found @ vulnerabilities
C:\Users\neven\Desktop\evidencija_studenata>npm install vue3-toastify
added 1 package, and audited 44 packages in 2s

6 packages are looking for funding
run ‘npm fund' for details

found © vulnerabilities

C:\Users\neven\Desktop\evidencija_studenata>

Sl. 1.4 Instalacija projekta, Axios i Vue 3 Toastify biblioteka

4. Brisanje nepotrebnih fajlova
e U istoj konzoli pokrenuti komandu za pokretanje aplikacije.:

npm run dev

e Zatim je potrebno otvoriti projekat u VS Code-u. Vue projekat dolazi sa
podrazumevanim komponentama (engl. components) i pogledima (engl. views), koje
je potrebno obrisati i izmeniti.

e Naslici 1.5 prikazana je podrazumevana struktura novokreiranog Vue projekta, dok je
na slici 1.6 prikazana krajnja struktura koju je potrebno posti¢i nakon brisanja svih
fajlova u components | views folderima.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

Objasnjenje same strukture | princip rada Vue.js-a bi¢e u zasebnom poglavlju.

~ EVIDENCUASTUDE.. [} B2 U ¢

» node_modules
~ public

favicon.ico

main.css
~ components
» icons
WV Helloworld.vue
WV TheWelcome.vue
WV welcomeltem.vue
~ rputer
Js index.js
~ Views
WV AboutView.vue
¥ HomeView.vue
WV App.uue
J5 main.js
gitignore
index.html
{} jsconfig.json
{} package-lockjson
{} packagejson
README.md
J5 vite.config.js

~ EVIDENCUASTUDE... [B U &

» node _modules
~ public
* favicon.ico
~ 5[
» assets
base.css
logo.svg
main.css
~ components

= router

J5 main,js
gitignore
index.hitmil

{} jsconfigjson

{} package-lock.json

{} packagejson
README.md

15 vite. '

Sl. 1.6 Struktura projekta nakon brisanja

nepotrebnih fajlova

Sl. 1.5 Inicijalni novokreirani Vue

projekat

e Zatim je potrebno izmeniti router/index.js i App.vue fajlove tako da se obriSu
nepotrebne linije koda. Slika 1.7 prikazuje krajni router/index.js fajl, dok slika 1.8
prikazuje krajni App.vue fajl nakon brisanja.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

src » router > J5 index.js > ...
import { createRouter, createWebHistory }

const router = createRouter(
history: createWebHistory(import.meta.env.BASE URL),
utes: [],

ault router

src 2 ¥ App.vue 2

ccript setup
import { RouterLink, RouterView } from

Sl. 1.8 Izmenjeni App.vue fajl

5. Instalacija Bootstrap 5.3.3 i Font Awesome biblioteka za stilizaciju
e Za implementaciju ovih biblioteka, potrebno je izmeniti index.html tako da budu
uklju€eni potrebni CDN-ovi:
o https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/css/bootstrap.min.css
o https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/js/bootstrap.bundle.min.js
o https://kit.fontawesome.com/0660ce38c6.js
e Na slici 1.9 nalazi se index.html sa ukljuéenim gorenavedenim CDN-ovima (engl.
Content Delivery Network).

https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/css/bootstrap.min.css
https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/js/bootstrap.bundle.min.js
https://kit.fontawesome.com/0660ce38c6.js

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

Sl. 1.9 Ukljuéivanje Bootstrap-a i Font Awesome-a u index.html

6. Dodatne konfiguracije

o Kako bi Vue 3 Toastify biblioteka bila ukljuCena u aplikaciju, potrebno je izmeniti
main.js i dodati odgovarajuci kod koji je prikazan na slici 1.10.

e S obzirom da je potrebno da ova aplikacija konzumira Flask API koji se pokreée na
http://localhost:5000 URL-u (engl. Uniform Resource Locator), potrebno je izmeniti
vite.config.js tako da se za slanje HTTP zahteva omoguéi koriS¢enje “/api” alias-a
umesto http://localhost:5000. I1zgled ove ismene prikazan je na slici 1.11.

~t { createfpp } from "wvue";
t App from "

app.use(Vue3T
autoClose: 3

1)

app.use(router);

app.mount(“#app”};

Sl. 1.10 Izmena main.js fajla radi ukljuéivanja Vue 3 Toastify biblioteke

http://localhost:5000/
http://localhost:5000/

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

fileURLToPath, URL } from

{ defineConfig } f

ult defineConfig(y
: [vue()],
server: |

proxy: {
changeOrigin:

rewrite: (path) => path.replace

": fileURLToPath(new URL({"./src”, import.meta.url}),

SlI. 1.11 Izmena vite.config.js fajla radi koriS¢enja ,/api” alias-a

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

2. Princip rada Vue.js-a

Vue.js je progresivni JavaScript framework za izradu korisni¢kih interfejsa Ul (engl. User
Interface). Radi tako Sto omogucéava razdvajanje logike aplikacije, njenog prikaza i
menadzmenta podataka u pojedinacne komponente. Vue koristi Virtual DOM (engl.Virtual
Document Object Model), $to znadi da azurira samo one delove korisni¢kog interfejsa koji se
menijaju, €ineci aplikaciju brzom i efikasnijom.

Vue.js aplikacija se sastoji od viSe komponenti. Svaka komponenta predstavlja jedan deo
interfejsa i sadrzi HTML (engl. HyperText Markup Language) za prikaz, JavaScript za logiku,
| CSS (engl. Cascading Style Sheets) za stilizaciju. Komponente se medusobno povezuju,
deleéi podatke kroz “props” (za prosledivanje podataka roditelj-deca) i komunicirajuci kroz
dogadaje. Vue.js koristi data-binding koji povezuje model podataka sa prikazom u realnom
vremenu. To znacdi da kad se podaci promene, Vue automatski azurira prikaz korisniku bez
potrebe za ru¢nim manipulacijama DOM-om.

2.1 Glavne komponente i objaSnjenje strukture u Vue.js projektu

1. node_modules/

o Ovaj folder sadrZi sve instalirane Node.js pakete i biblioteke koje aplikacija koristi.

Ove biblioteke su navedene u package.json datoteci.
2. public/

o Ovaj folder sadrzi statiCke datoteke koje ¢e biti direktno dostupne na vebu (npr.

slike, fontovi, favicon.ico). Vue ne vrSi obradu ovih datoteka.
3. src/ (Source folder)

e Glavni folder za ceo kod. Ovde se nalazi aplikacija, njene komponente, rute,

globalni stilovi itd.
4. assets/

e Sadrzi statiCke resurse kao $to su slike, CSS, ili fontovi koji ¢e se obradivati i
optimizovati kroz build alat (Vite ili Vue CLI (engl. Command Line Interface)).
Na primer, u ovom folderu se mogu Cuvati slike logotipa, pozadinske slike ili fajlovi
sa stilovima (.css ili .scss).

5. components/

Sadrzi Vue komponente. Komponente su osnovne gradevne jedinice aplikacije, a

svaka komponenta moze predstavljati deo korisni¢kog interfejsa (npr. dugme, tabela,

kartica). Primer, moguce je imati fajlove Navbar.vue, Sidebar.vue, Footer.vue,
koiji ¢ine razliCite delove korisni¢kog interfejsa.
6. router/

e Sadrzifajl index.js povezan sa Vue Router-om. Vue Router je deo aplikacije koji
omogucava upravljanje navigacijom izmedu razliCitih delova aplikacije
(komponenti). On omogucava kreiranje SPA, gde navigacija ne osvezava celu
stranicu, ve¢ se dinami¢ki menja sadrzaj prikazan korisniku. U router/index. js,
rute se definiSu kao na slici 2.1:

o0 path: URL putanja koja korisnika vodi do odredene komponente.
o0 component: Komponenta koja ¢e biti prikazana kada se korisnik nade na
odredenoj putaniji.

10

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

{ createRouter, createWebHistory }

3

routes = [

router = {

(process.env.BASE_URL),

routes

1

router;

Sl. 2.1 router/index.js

. store/

e Ovaj folder sadrzi fajlove povezane sa Vuex-om, ako se koristi Vuex za globalno
stanje aplikacije. Vuex je biblioteka za centralizovano upravljanje podacima (engl.
state management) u Vue aplikacijama.

. views/

e Sadrzi komponente koje predstavljaju razliCite "stranice" aplikacije (poznate kao
poglede). Svaka stranica moze biti povezana sa specificnom rutom.
Primer. Home.vue, About.vue, Profile.vue. Ove komponente se obi¢no
prikazuju pomocu <RouterView> u glavnoj aplikaciji (kao Sto je App.vue).

. App.vue

e Ovo je koren (engl. root) komponenta Vue.js aplikacije. App.vue je obi¢no
kontejner za druge komponente i koristi se kao glavna komponenta u koju se
uCitavaju sve ostale komponente. Sadrzi template (HTML), script (JavaScript),
i style (CSS).

0 <template>: Sadrzi HTML kod koji definiSe kako ¢&e aplikacija biti
prikazana.

0 <script>: Sadrzilogiku aplikacije — moze da upravlja stanjem, podacima,
dogadajima itd.

0 <style>: Ovde se stilizuju elementi unutar komponente.

e U App.vue, sve Sto se stavi u <template> i <style> primenjuje se globalno na
celu aplikaciju, primer je Navbar komponenta sa slike 2.2, koja ¢e biti vidljiva na
svim stranicama osim na login strani. RouterView sluzi za dinamic¢ko prikazivanje

11

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

komponenata u zavisnosti od aktivhe rute, omoguc¢avajuéi da se samo sadrza;j
unutar RouterView menja dok ostatak aplikacije ostaje isti.

V¥ App.vue > ..

script setup
import { RouterLink, RouterView } from "vue-router";

import Navbar from "./components/Navbar.vue";

Navbar v-if="$route._name !== 'Login Navbar
RouterView></RouterView
div

template

Sl. 2.2 App.vue

10. main.js
e main.js je ulazna tacka (engl. entry point) aplikacije. On inicijalizuje Vue instancu i
povezuje aplikaciju sa HTML dokumentom (obi¢no sa elementom koji ima
id="app"). Takode moze da ucita globalne stilove, rute i druge osnovne
konfiguracije. Na slici 2.3 prikazan je primer main.js fajla.

{ createApp }

router

(router).

Sl. 2.3 main.js

11. index.html
o Ovo je staticki HTML fajl koji sluZi kao polazna tacka aplikacije. On sadrzi <div>
element koji sluzi kao ,sidro“ za Vue aplikaciju. Vue uzima ovaj statiCki sadrzaj i
dinamicki ga menja koristeci JavaScript, prikazuju¢i komponente aplikacije.
e Kao na slici 2.4, Vue aplikacija je vezana za element sa id="app". Sve
komponente i prikaz ¢e biti renderovani unutar ovog div elementa.

12

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

<!DOCTYPE
<html
<head>
<meta />

<meta =

<title>Vue App</title>

</head>
<body>
<div id= ></div>
<script ></script>
</body>
</html>

Sl. 2.4 index.html

~ EVIDENCUA STUDE.. [} BT © ¢

» node_modules
~ public
* favicon.ico

main.css

~ components
> icons
W Helloworld.vue
W TheWelcome.vue
W Welcomeltem.vue

~ router

~ Views
W AboutView.vue
W HomeV

¥V Appvue

J5 main,js

.gitignore

. html
nfig.json
{} package-lockjson
{} packagejson
i) README.md
J5 vite.co

Sl. 2.5 Prikaz strukture Vue.js projekta

13

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

3. Klijent server arhitektura

Klijent-server arhitektura je model komunikacije izmedu dva entiteta: klijenta i servera. U ovom
modelu, klijent (koji je obiéno veb pretrazivac ili mobilna aplikacija) Salje zahteve serveru, a
server obraduje te zahteve i vraca odgovore.

U kontekstu REST API-ja, ovaj model se koristi za razmenu podataka izmedu klijenta i
servera. Klijent moZe da bude frontend aplikacija (npr. napisano u Vue.js ili React), dok server
(backend) moze biti implementiran u nekom jeziku kao 5to je .NET Core (C#), Flask (Python),
Laravel (PHP), itd...

o Frontend: Deo aplikacije koji je vidljiv korisnicima i koji oni koriste direktno.
Frontend se obi¢no razvija koriste¢i HTML, CSS, i JavaScript okvire kao $to su
Vue.js ili React. Frontend Salje zahteve ka API-ju kako bi dobio ili poslao podatke
sa servera.

e Backend: Deo aplikacije koji se izvrSava na serveru, | koji upravlja obradom
podataka, autentifikacijom, validacijom i komunikacijom sa bazom podataka.
Backend je zaduzen za primanje zahteva od klijenta (preko API-ja), obradu tih
zahteva i slanje odgovarajucih podataka nazad na frontend.

3.1 Pojam API-ja

APl je interfejs koji omogucéava razli¢itim aplikacijama da komuniciraju medusobno. REST API
je specifi€an stil arhitekture za izgradnju API-ja, gde se komunicira putem HTTP metoda (GET,
POST, PUT, DELETE). APl omogucava klijentu da vrsi razli¢ite akcije kao $to su dobijanje
podataka sa servera, slanje novih podataka, azuriranje ili brisanje postojecih podataka.

Proces dobijanja podataka sa servera:

1. Zahtev od klijenta: Kada korisnik pokrene neku akciju na frontend aplikaciji (npr. klikne
na dugme da vidi listu proizvoda), frontend Salje HTTP zahtev ka REST API-ju na
serveru.

2. Obrada zahteva na serveru: Server prima zahtev i na osnovu rute i metode (GET,
POST, itd.) obraduje taj zahtev. Na primer, ako klijent zahteva listu proizvoda, server
¢e poslati upit ka bazi podataka, dobiti trazene podatke i pripremiti ih u JSON formatu.

3. Odgovor sa servera: Nakon obrade zahteva, server vracéa HTTP odgovor klijentu koji
sadrzi trazene podatke u formatu koji frontend moze da interpretira (najce$¢e JSON).

4. Prikaz na frontendu: Frontend zatim koristi dobijene podatke da ih prikaze korisniku
(npr. renderuje listu proizvoda na stranici).

Primer:

1. Kilijent: Korisnik klikne na dugme da vidi sve proizvode u aplikaciji.

2. HTTP zahtev: Frontend (npr. Vue.js aplikacija) Salje HTTP GET zahtev ka ruti APl-ja,
npr. /products.

3. Server: Backend (npr. Flask API) prima zahtev na ruti /products, preuzima podatke iz
baze i vra¢a ih u JSON (engl. JavaScript Object Notation) formatu.

4. HTTP odgovor: Server vraca odgovor koji sadrzi JSON listu svih proizvoda.

5. Prikaz na frontendu: Frontend prima odgovor i prikazuje listu proizvoda korisniku.

14

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

Jednostavna Flask ruta koja vraca listu proizvoda
from flask import Flask, jsonify

app = Flask(__name_)

Simulirani podaci

products = [
"id": 1, "name": "Proizvod 1", "price": 100},
{"id": 2, "name": "Proizvod 2", "price": 200},
]

Ruta za vracdanje liste proizvoda

@app.route('/products', methods=["'GET'])

def get products():
jsonify funkcija koja konvertuje izlaz u JSON response objekat
return jsonify(products)

if _name__ == "'_main__':
app.run(debug=True)

app.py

/* Frontend kod u Vue.js-u koji koristi Axios za slanje GET zahteva Flask
API-ju i prikazivanje podataka */

<script setup>

import { ref, onMounted } from ‘vue';

import axios from 'axios';

import { toast } from 'vue3-toastify’;

const products = ref([]); /* Ref (reaktivna promenljiva) za cuvanje liste
proizvoda */

const fetchProducts = async () => {
try {
// Poziv Flask API-ja
const response = await axios.get('http://localhost:5000/products’');
products.value = response.data; // Cuvanje podataka u products ref
} catch (error) {
toast.error('Greska pri preuzimanju proizvoda: ' + error.message);
}
}s

onMounted(() => {

/* Poziv API-ja kada se komponenta mount-uje
(Dodavanje HTML elemenata koji odgovaraju ovoj komponenti u DOM) */
fetchProducts();

1)

</script>

15

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

<template>
<div>
<hl>Lista proizvoda</hl>

<1li v-for="product in products" :key="product.id">
{{ product.name }} - Cena: {{ product.price }} RSD
</1li>

</div>
</template>

<style>
/* Stilovi po zelji */
</style>

ProductsPrimer.vue

/* Registrovanje /products rute kako bi se na njoj u veb pregledacu ucitala
ProductsPrimer.vue komponeta */

import { createRouter, createWebHistory } from "vue-router";

import ProductsPrimer from "@/views/ProductsPrimer.vue";

const routes = [
{
path: "/products”,
name: "Products”,
component: ProductsPrimer,
}s
1

const router = createRouter({
history: createWebHistory(import.meta.env.BASE_URL),
routes,

1)

export default router;

router/index.js

16

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

PojasSnjenje:

o Axios GET zahtev: Kada se komponenta mount-uje (tj. kada se ucita), Vue.js Salje
GET zahtev ka ruti /products Flask API-ja koriste¢i axios.get. U ovom sluc€aju,
URL je “http://localhost:5000/products”, jer server radi lokalno.

¢ Odgovor APIl-ja: Ako je zahtev uspeSan, odgovor (response.data) sadrzi listu
proizvoda u JSON formatu, koji se zatim ¢uva u products reaktivnoj promenljivoj
u Vue.js komponenti.

e Renderovanje podataka: U template delu, Vue koristi v-for direktivu da iterira
kroz listu products i prikaze svaki proizvod u <1i> elementu sa informacijama o
imenu i ceni.

e Na slici 3.1 prikazana je stranica u veb pregledacu nakon §to se pristupi ruti
/products, odnosno “http://localhost:5173/products”

vV Vite App x +

< Cc ® localhost:5173/products

Lista proizvoda

e Proizvod 1 - Cena: 100 RSD
e Proizvod 2 - Cena: 200 RSD

Sl. 3.1 Pristupanje /products ruti koja render-uje ProductsPrimer.vue

3.2 Pojam Autentifikacije

Autentifikacija je proces kojim se proverava identitet korisnika ili sistema koji pokuSava da
pristupi odredenom resursu. U sustini, autentifikacija odgovara na pitanje: "Ko si ti?" Na
primer, kada korisnik unosi korisni¢ko ime i lozinku na login formi, APl ili server proverava da
li su te informacije taCne i na osnovu toga dozvoljava ili odbija pristup.

3.2.1 Autentifikacija kolaci¢éima (engl. Cookie authentication)

Cookie autentifikacija je tradicionalna metoda autentifikacije gde, nakon uspesne prijave
korisnika, server kreira sesiju (engl.session) i povezuje je sa korisnikom. Server zatim Salje
cookie nazad Kklijentu (obi¢no veb pregledacdu), koji €uva cookie i koristi ga u svim narednim
zahtevima prema serveru.

Na slici 3.2 prikazano je funkcionisanje cookie autentifikacije:

17

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

1. Prijava korisnika: Korisnik unosi svoje kredencijale (korisnicko ime i lozinku).
2. Validacija na serveru: Server proverava da li su kredencijali ispravni.
3. Kreiranje sesije: Ako su kredencijali ispravni, server kreira sesiju ha serveru i povezuje
je sa korisnikom.
4. Povezivanje sesije i cookie-a: Server stavlja sessionlD u cookie-ju.
5. Slanje cookie-a: Server Salje klijentu cookie koji sadrzi ID sesije.
6. Svaki naredni zahtev: Klijent automatski Salje cookie sa ID-jem sesije u zaglaviju
svakog narednog zahteva. Server preko ID-ja pronalazi sesiju i identifikuje korisnika.
Cookie/Session Based Authentication
Login + Password » -
S,
* Cookie/Session 1D
A . -
Request:: Session/Cookie »
* Success 200

Sl. 3.2 Funkcionisanje cookie autentifikacije

Problem sa cookie autentifikacijom:

1.

Pamcéenje stanja (engl. stateful): Server mora da pamti sve aktivne sesije, Sto znaci da
mora da skladisti informacije o prijavljenim korisnicima. Ovo moZe postati
problemati¢no u distribuiranim sistemima ili kada postoji viSe servera.

Pitanja skalabilnosti: Kako bi sistem bio skalabilan, sesije se esto moraju skladistiti u
zajednickoj bazi podataka ili memori, $to povecava slozenost.

3.2.2 JWT Autentifikacija (engl. JSON Web Token authentication)

JWT

autentifikacija koristi metodu autentifikacije bez paméenja stanja (engl. stateless).

Umesto da se server oslanja na sesije, JWT koristi token koji se generiSe na serveru i Salje
klijentu nakon prijave. Klijent zatim Salje ovaj token u svakom narednom zahtevu, a server
koristi token za verifikaciju korisnika.

Token je mali digitalni token (u ovom slu¢aju JWT) koji sadrZi korisniCke podatke i koristi se
za autentifikaciju. Token je obi¢no Sifrovan i potpisan, $to znadi da je siguran od izmena.

Slika 3.3 prikazuje komponente JWT tokena:

1.
2.

Header (zaglavlje): SadrZi tip tokena i algoritam za potpisivanje (npr. HS256).
Payload (telo): Sadrzi korisniCke podatke, kao Sto su korisni¢ki ID, uloga, i druge
informacije koje server moZze koristiti.

Signature (potpis): Obezbeduje integritet tokena i koristi se da se osigura da token nije
izmenjen nakon Sto je izdat.

18

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

eyJhbGciOiJIUzI 1NilsInR5cCIBIkpXVCJ9.eyJzd WIOi X MjMONT
Y 30DkwliwibmFtZSI61kpvaG4gRGOlliwiaWF0ljoxNTE2MjM5M
DIyfQ.XbPfbIHMIBarZ3Y922BhjWgQzWXcXNrzOogtVhfEd2o @)

o Header ° Payload ° Signature

{
"sub": "1234567890",
"name": "John Doe",
"iat": 1516239022

}

Sl. 3.3 Komponente JWT tokena

Slika 3.4 prikazuje funkcionisanje JWT autentifikacije:

1. Prijava korisnika: Korisnik unosi svoje kredencijale.

2. Generisanje tokena: Server proverava kredencijale, i ako su tacni, kreira JWT token
koji sadrzi informacije o korisniku (kao $to su korisni¢ki ID, uloga, i sl.). Ovaj token je
Sifrovan i potpisan.

3. Slanje tokena: JWT token se Salje klijentu.

4. Svaki naredni zahtev: Klijent u svakom narednom zahtevu Salje JWT token u
Authorization zaglavlju (obi¢no sa "Bearer" prefiksom).

5. Verifikacija na serveru: Server deSifrje token, proverava njegov integritet (da li je
validan | neizmenjen), | koristi podatke iz tokena da identifikuje korisnika | proveri
njegova prava pristupa.

Browser Server

1. POST /login with username and password

2. Creates a JWT
with a secret
3. Sends the JWT to the browser

-

4. Sends the JWT (eg. on the Authorization header)

5. Checks the JWT signature.
Gets user information

6. Sends response to the client from the JWT

)
iy

Sl. 3.4 Funkcionisanje JWT autentifikacije

19

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

Prednosti koriS¢enja tokena:

1. Stateless (bez potrebe za skladiStenjem sesija): Server ne mora da ¢uva informacije o
prijavljenim korisnicima jer se svi potrebni podaci nalaze unutar tokena. Ovo olakSava
skalabilnost i smanjuje optereéenje servera.

2. Laksa skalabilnost: Sa JWT, serveri ne moraju da dele informacije o sesijama izmedu
sebe, $to omogucava lakSe skaliranje aplikacije (npr. distribuciju optereéenja na vise
servera).

3. Bezbednost: JWT tokeni su Sifrovani i potpisani, $to znaci da su podaci unutar njih
bezbedni. Takode, server moze lako da proveri da li je token izmenjen.

4. Jednostavna autentifikacija u mikroservisima: JWT tokeni omogucavaju jednostavnu
autentifikaciju u sistemima sa viSe mikroservisa jer svaki servis moze da proveri token
bez potrebe za pristupom centralnoj sesiji.

5. Fleksibilnost: Tokeni mogu sadrzati dodatne informacije o korisniku (npr. prava
pristupa), Cime se omogucava lak8a autorizacija bez potrebe za dodatnim upitima ka
bazi podataka.

3.3. Pojam autorizacije

Autorizacija je bezbednosni proces koji odreduje koja prava i privilegije ima autentifikovani
korisnik u okviru sistema. Za razliku od autentifikacije, koja proverava identitet korisnika,
autorizacija odgovara na pitanje Sta korisnik sme da radi. Ona definiSe kojim resursima
korisnik moZze da pristupi i koje operacije moze da izvrsi, kao $to su Citanje, izmena ili brisanje
podataka.

Role (uloge) predstavljaju strukturisan i sistemati€an nacin upravljanja pristupom u sistemima.
Svaka rola obuhvata unapred definisan skup dozvola, pravila i odgovornosti koji odreduju koje
funkcionalnosti i resurse korisnik moze da koristi. Umesto individualnog dodeljivanja prava
svakom korisniku, korisnici se povezuju sa odgovarajuéim rolama, ¢ime se postiZze bolja
preglednost i lak8e odrzavanje sistema. Ovakav pristup omogucava jasnu podelu nadleznosti
izmedu razlicitih tipova korisnika, kao $to su administratori, moderatori i standardni korisnici,
smanjuje rizik od greSaka u dodeli privilegija i doprinosi viSem nivou bezbednosti i kontrole u
savremenim softverskim i distribuiranim okruZenjima.

U nastavku je jedan jednostavni primer koji se najéescée koristi u praksi:

U aplikaciji za upravljanje dokumentima postoje dve role: Administrator i Korisnik.
Administrator ima puna prava nad sistemom, 3to ukljuuje dodavanje i brisanje korisnika,
dodeljivanje rola, kao i kreiranje, izmenu i brisanje svih dokumenata. Korisnik ima ograni¢ena
prava i moze da pregleda dokumente kojima ima pristup, kao i da kreira i menja iskljucivo
sopstvene dokumente, ali nema moguénost upravljanja drugim korisnicima niti sistemskim
podeSavanjima.

U ovom slucaju, nakon uspesne autentifikacije, sistem proverava da li je korisnik Administrator
ili Korisnik i na osnovu te role omogucava ili ogranic¢ava pristup odredenim funkcionalnostima.
Ovakva podela rola omoguéava jasnu kontrolu pristupa, jednostavnije odrzavanje sistema i
smanjenje bezbednosnih rizika.

20

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

4. Izrada aplikacije

4.1 Izgled aplikacije, stranice i rute

Na slikama 4.1, 4.2, 4.3, 4.4, 45, 4.6, 4.7, 4.8, 4.9, 4.10 | 4.11 nalaze se stranice koje €ine
kompletnu aplikaciju.

a

£ AKARBEMMUIA
»- TEXHHYKO-BACTIMTAYKHX
& ‘ CTPYKOBHHX CTYAHIA

&

Sl. 4.1 Login

Studentska evidencija Studenti Predmetl Korsi

Broj indeksa e Prezime Godina studijs ESPB. Prossk ccena Alcije
Marke Markovid 3 14 0 "
hvans heancvic 3 7 9 ']

Sl. 4.2 Studenti

Studentska evidencija Sudenii Predmeti

ime Harka Predmat

Ime roditaljs Feljka Oeena

Prezime Markowi

Broj indsksa SRT 0V/22 Dutum

dd ey [m]

Gadina studija 3

Broj telefona 06112343678 m

Emadl marko@marko.com

Datum rodanja 121203003

IMBG 1212003735023

Ukupno ESPE 14

Prosek ocena 0

Alkcije #
Sifra pradmeta Naziv pradmaeta Gedina ESPB Suatus predemata Ocana Akdje
MAT1 Matematika 1 1 7 obavezni 0 L]
Mar2 Matematika 2 1 7 obavezni 0]

SI. 4.3 Student

21

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

Studentska evidencija

lzmena studenta

me
Marke

Prezime me roditelja
ariovit Lefiko

Gedina studia Daturm redenjs

» 1211272003 o

Sl. 4.4 Izmena studenta

Studentska evidencija

Movi student

8roj indelesa Ime
Brazime I editel]
2] Brej telefons
Godina studija Datum rodenja
Izaberi godire - memyddiyyyy o

Sl. 4.5 Dodavanje novog studenta

Studentska evidencija

Sifra Naziv Godina Studija ESPB Obaveni / lzborni Akcije

MAT2 Maternatika 2 1 7 abavezn ¥
MATY Matematika 1 1 7 abarezn §
¥sst Wlijert serve: sistemi 3 8 abavezn 8
VEBT Veeb programiranje 3 3 abavezrs M
NETH NET tetinslegije 3 3 abavezrs 8

Sl. 4.6 Predmeti

22

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

Studentska evidencija

Izmena predmeta

Sifra
MaT2

Nativ
Maternatikca 2

Godina studija
ESPB

OCbavezni { lzborm

Obavezni w

Sl. 4.7 Izmena predmeta

Studentska evidencija

Movi predmet

Sifra
Wagiv

Godina studia

Sl. 4.8 Dodavanje novog predmeta

Studentska evidencija

ime Prazime Email fala Alkclja
Petar Potrosdd testnest.con profesor &
Ademiristratos Admiristrator testd@test.oom administrator]

SlI. 4.9 Korisnici

Potvrda brisanja

[a li ste sigurni da Felite da obrifete korisnika?

Cown [o

Sl. 4.10 Modal za brisanje entiteta

23

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

Studentska evidencija Studenti Predmeti Kosisr

lzmena korisnika

Sl. 4.11 Izmena korisnika

Studentska evidencija Staderti Predmot Korsnic

Movi korisnik

Sadira]

Sl. 4.12 Dodavanje novog korisnika

4.2 Razdvajanje u komponente

Na gorenavedenim slikama mogucée je primetiti neka ponavljanja | sliCnosti na svim
stranicama. Konkretno, navigacioni meni se javlja na svakoj stranici, osim na login-u. Takode,
forme za izmenu | dodavanje novih entiteta (studenata, predmeta | korisnika) imaju isti stil |
izgled, a isto vaZi | za prikazivanje entiteta (studenata, predmeta | korisnika) u tabele. Sto se
tice brisanja entiteta, za svaki iskace isti modal za potvrdu brisanja prikazan na slici 4.10.

1. Imajuci ovo u vidu, pozeljno je kreirati reusable komponente (components), koje ¢e se
koristiti na stranicama, tj. u pogledima (views) po potrebi, a to bi bile:

Navbar.vue — navigacioni meni

FormContainer.vue - <div> element, kontejner sa odredenim stilovima za forme
TableContainer.vue - <div> element, kontejner sa odredenim stilovima za tabele
DeleteModal.vue — potvrdni modal koji ¢e iskakati kada se pokrene akcija brisanja

akrwbd

24

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

5. Kreiranje komponenti i stranice za login

5.1 views/Login.vue

Potrebno je u folder views kreirati novi fajl | nazvati ga Login.vue. Predstavljace login
stranicu.

<script setup>

import { ref } from "vue";

import axios from "axios";

import { useRouter } from "vue-router";
import { toast } from "vue3-toastify";

const email = ref("");
const lozinka = ref("");
const router = useRouter();

const handleSubmit = async (event) => {
event.preventDefault();
try {
const response = await axios.post("/api/login", {
email: email.value,
lozinka: lozinka.value,

1)

localStorage.setItem("access_token", response.data.access_token);
localStorage.setItem("rola", response.data.rola);

router.push("/studenti").then(() =>
toast.success(response.data.message));
} catch (error) {
toast.error(error.response.data.message || error.message);
}
s

</script>

<template>
<div class="container">
<div class="row justify-content-center my-5">

</div>
<div class="row justify-content-center">
<div class="col-1g-6 col-xs-12">
<form @submit="handleSubmit">
<div class="form-group mb-3">
<label>Email adresa</label>
<input type="email" v-model="email" class="form-control"” required
/>

25

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

</div>
<div class="form-group mb-3">
<label>Lozinka</label>
<input
type="password"
v-model="lozinka"
class="form-control”
required
/>
</div>
<input
type="submit"
class="btn btn-primary"
role="button"
value="Prijavi se"
/>
</form>
</div>
</div>
</div>
</template>

<style scoped>
.logo {
width: 20rem;
height: auto;

}
</style>

Login.vue izvorni kod

1. Script setup

<script setup>

Ovo je specijalan nacin za pisanje JavaScript-a u Vue 3. Sve 3to se napiSe unutar <script
setup> direktno je dostupno u Vue.js komponenti. Ovo pojednostavljuje kod i omogucava
koris¢enje promenljiva i funkcija bez dodatnih deklaracija.

2. Importovanje

import { ref } from "vue";
import axios from "axios";
import { useRouter } from "vue-router";

26

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

import { toast } from "vue3-toastify";

Vue omoguc¢ava modularnost, pa je moguce uvoziti delove koda iz drugih fajlova. U ovom
slucaju:
e ref je funkcija iz Vue.js koja omogucava kreiranje reaktivnih promenljiva. Reaktivne
promenljive u Vue.js automatski aZuriraju prikaz kada se promene
¢ useRouter omogucava navigaciju izmedu stranica unutar aplikacije.
e toast dolazi iz vue3-toastify i koristi se za prikazivanje malih obavesStenja (npr.
poruke o uspesnoj odjavi).
e Axios je komponenta koja se koristi za slanje HTTP zahteva (u ovom sluéaju potrebno
je poslati POST zahtev za login)

3. Promenljive

const email = ref("");
const lozinka = ref("");
const router = useRouter();

e ref: funkcija iz Vue.js koja omoguéava kreiranje reaktivnih promenljiva. Reaktivne
promenljive (u ovom slu€aju email | lozinka) u Vue.js automatski azuriraju prikaz
kada se promene. Primer, promenljiva email je definisana pomocu ref (), Sto znadi
da je inicijalno postavljena na prazan string, a kasnije moZe biti azurirana. Kada se
vrednost email promeni, sve komponente koje zavise od ove vrednosti ¢e automatski
biti osvezene.

e router: instanca router-a koja se koristi za navigaciju.

4. handleSubmit funkcija

const handleSubmit = async (event) => {
event.preventDefault();
try {
const response = await axios.post("/api/login", {
email: email.value,
lozinka: lozinka.value,

})s

localStorage.setItem("access token", response.data.access_token);
localStorage.setItem("rola", response.data.rola);

router.push("/studenti").then(() =>
toast.success(response.data.message));
} catch (error) {
toast.error(error.response.data.message || error.message);

27

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

}s

e handleSubmit je funkcija koja se poziva kada se forma podnese:

<form @submit="handleSubmit">

e event.preventDefault() spreCava podrazumevano ponasanje forme (npr.
osveZavanije stranice).
e axios.post Salje POST zahtev na /api/login sa email i lozinka vrednostima.
e Ako je zahtev uspeSan:
o localStorage.setItem Cuva access_tokenirolau localStorage.
o router.push preusmerava korisnika na /studentirutu i prikazuje uspeSnu
notifikaciju.
e Ako dode do gredke, prikazuje greSku koristeci toast.

o

Slika logotipa

Potrebno je u src/assets/img folder ubaciti sliku pod nazivom logo.png, a ovaj ise€ak koda
omogucava prikazivanje slike na vrhu forme. Slika je stilizovana klasom .logo u <style>
komponenti:

<style scoped>
.logo {
width: 20rem;
height: auto;

}
</style>

6. Input polja

<input type="email" v-model="email" class="form-control" required />

<input type="password" v-model="lozinka" class="form-control” required/>

v-model direktiva omogucéava tzv. dvostruko vezivanje (engl. Two-way binding). Dvostruko
vezivanje zna¢i da promena vrednosti u input polju automatski azurira povezanu
promenljivu, i obrnuto, promena vrednosti promenljive automatski azurira vrednost u input
polju.
Nacin rada na konkretnom primeru:

o Deklaracija reaktivnih promenljivih:

28

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

0 U JavaScript delu komponente, odnosno <script setup> deklarisane su dve
reaktivne promenljive (email | lozinka) koristeéi ref:

const email = ref("");
const lozinka = ref("");

o email: Cuva vrednost unetu u polje za email.
0 lozinka: Cuva vrednost unetu u polje za lozinku.
e Vezivanje input polja za promenljive
0 U HTML delu komponente, koristi se v-model direktiva radi vezivanje input
polja za ove promenljive. V-model="email” vezuje vrednost input polja za
promenljivu email, dok v-model="1ozinka” vezuje vrednost input polja za
promenljivu 1lozinka.
e Primer: ako korisnik unese “user@example.com” u input polje za email:

<input type="email" v-model="email" class="form-control" required />

0 Promenljiva email.value postaje "user@example.com”

0 Ako se kasnije u kodu promeni email.value na "newuser@example.com”,
input polje ¢e automatski prikazati "newuser@example.com".

o0 Ovo olakSava rad sa formama i osigurava da su podaci uvek sinhronizovani
izmedu korisni€kog interfejsa i logike aplikacije.

7. Registrovanje /login rute

Potrebno je u fajlu router/index.js registrovati rutu za login. Kada se pristupi URL-u:
http://localhost:5173/login, ucitace se gorenavedena Login.vue komponenta.

import { createRouter, createWebHistory } from "vue-router";
import Login from "@/views/Login.vue";

const routes = [
{
path: "/login",
name: "Login",
component: Login,
b
1

const router = createRouter({
history: createWebHistory(import.meta.env.BASE _URL),
routes,

})s

export default router;

29

http://localhost:5173/login

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

router/index.js izvorni kod

8. Zahtevanje prijave (login) u aplikaciju na svakih 30 minuta

Potrebno je u fajlu main.js dodati funkciju setInterval koja ¢e brisati ceo sadrZaj, odnosno
podatke o roli | tokenu iz 1localStorage na svakih 30 minuta. Ova funkcija, radi sigurnosti |
bezbenosti, obezbeduje da korisnik mora da se prijavi (login) na svakih pola sata.

import { createApp } from "vue";

import App from "./App.vue";

import Vue3Toastify from "vue3-toastify";
import "vue3-toastify/dist/index.css";
import router from "./router";

import axios from "axios";

setInterval(() => {
localStorage.clear();
}, 30 * 60 * 1000);

const app = createApp(App);

app.use(Vue3Toastify, {
autoClose: 3000,

1)

app.use(router);

app.mount("#app");

main.js izvorni kod

9. Slanje JWT tokena uz svaki HTTP zahtev

Potrebno je u fajlu main.js dodati kod za konfiguraciju Axios-a. Dodata funkcija koristi Axios
interceptore za dodavanje Authorization zaglavlja sa JWT tokenom u svaki HTTP zahtev koji
se Salje sa klijenta.

import { createApp } from "vue";

import App from "./App.vue";

import Vue3Toastify from "vue3-toastify";
import "vue3-toastify/dist/index.css";
import router from "./router";

import axios from "axios";

30

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

setInterval(() => {
localStorage.clear();
}, 30 * 60 * 1000);

axios.interceptors.request.use(
(config) => {
const token = localStorage.getItem("access_token");
if (token) {
config.headers.Authorization = “Bearer ${token} ;

}

return config;

s
(error) => {
return Promise.reject(error);

}
)s

const app = createApp(App);

app.use(Vue3Toastify, {
autoClose: 3000,

1)

app.use(router);

app.mount("#app");

main.js izvorni kod

5.2 components/Navbar.vue

Potrebno je u folder components kreirati novi fajl | nazvati ga Navbar. vue.

<script setup>

import { RouterLink, useRoute } from "vue-router";

import { useRouter } from "vue-router";

import { useUserRole } from "@/composables/useUserRole.js";
import { toast } from "vue3-toastify";

import axios from "axios";

import { onMounted } from "vue";

const router = useRouter();
const { userRole, checkUserRole } = useUserRole();

const isActivelLink = (routePath) => {
const route = useRoute();

31

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

return route.path === routePath;
}s
onMounted(() => {

checkUserRole();
}s
const handlelLogout = async () => {

try {

localStorage.removeltem("access_token");
router.push("/login").then(() => toast.success("UspeSno ste se

odjavili."));
} catch (error) {
toast.error(error.response.data.message || error.message);
¥
}s

</script>

<template>
<nav class="navbar navbar-expand-lg navbar-dark bg-primary">
<div class="container-fluid">

<RouterLink class="navbar-brand" to="/studenti"
>Studentska evidencija</RouterLink

>

<button
class="navbar-toggler"
type="button"
data-bs-toggle="collapse”
data-bs-target="#navbarSupportedContent”
aria-controls="navbarSupportedContent”
aria-expanded="false"
aria-label="Toggle navigation"

</button>
<div class="collapse navbar-collapse"” id="navbarSupportedContent">
<ul class="navbar-nav me-auto mb-2 mb-1g-0">
<li :class="{ 'nav-item': true, active: isActivelLink('/studenti')

>
<RouterLink class="nav-1link"
to="/studenti">Studenti</RouterLink>
</1li>
<1i
v-if="userRole === 'administrator'"

:class="{ 'nav-item': true, active: isActivelink('/predmeti')

32

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

<RouterLink class="nav-link"
to="/predmeti">Predmeti</RouterLink>
</1i>
<1li
v-if="userRole === 'administrator'"
:class="{ 'nav-item': true, active: isActivelink('/korisnici')
3"
>
<RouterLink class="nav-1link"
to="/korisnici">Korisnici</RouterLink>
</1i>

<form class="d-flex" @submit.prevent="handlelLogout">
<button type="submit" class="btn btn-primary">
<i class="fas fa-sign-out-alt"></i>
</button>
</form>
</div>
</div>
</nav>
</template>

Navbar.vue izvorni kod

1. Importovanje

import { RouterLink, useRoute } from "vue-router";

import { useRouter } from "vue-router";

import { useUserRole } from "@/composables/useUserRole.js";
import { toast } from "vue3-toastify";

import { onMounted } from "vue";

Vue omoguc¢ava modularnost, pa je moguce uvoziti delove koda iz drugih fajlova. U ovom
slucaju:
e RouterLink iuseRoute dolaze iz vue-router, a to je alat koji pomaZze pri kreiranju
ruta (putanja) unutar aplikacije.
e useRouter omogucava navigaciju izmedu stranica unutar aplikacije.
e useUserRole je funkcija napisana u posebnom fajlu i koristi se da proveri koja je uloga
(role) korisnika.
e toast dolazi iz vue3-toastify i koristi se za prikazivanje malih obaveStenja (npr.
poruke o uspesnoj odjavi).
¢ onMounted je specijalna funkcija iz Vue.js-a koja omogucava da izvr§imo kod ¢im se
komponenta prikaze na ekranu.

33

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

2. useUserRole composable funkcija

Potrebno je kreirati folder composables unutar src foldera, a zatim u njemu kreirati fajl
useUserRoute. js:

import { ref } from "vue";

export function useUserRole() {
const userRole = ref(null);

const checkUserRole = () => {
const role = localStorage.getItem("rola");
userRole.value = role;

}s

return {
userRole,
checkUserRole,
}s
¥

Ovaj kod je jednostavna Vue.js kompozibilna funkcija koja sluzi za rad sa korisni¢kom rolom,
koriste¢i ref i funkciju za proveru role saCuvane u localStorage:

o ref: funkcija iz Vue.js koja omogucéava kreiranje reaktivnih promenljiva. Reaktivne
promenljive u Vue.js automatski azuriraju prikaz kada se promene. U ovom slucaju,
promenljiva userRole je definisana pomoc¢u ref(null), Sto znacdi da je inicijalno
postavljena na null, a kasnije moze biti azurirana. Kada se vrednost userRole
promeni, sve komponente koje zavise od ove vrednosti ¢e automatski biti osvezene.

o checkUserRole: funkcija koja sluzi za proveru korisniCke role. Unutar nje se koristi
localStorage.getItem("rola"”) kako bi se dobila vrednost saCuvana pod kljuCem
"rola" u lokalnoj memoriji pregledaCa. Kada se ova vrednost preuzme, dodeljuje se
reaktivnoj promenljivoj userRole putem userRole.value = role. Na taj nacin se
reaktivha vrednost aZurira.

e export function useUserRole(): omogucavanje koriS¢enje ove funkcije u drugim
delovima aplikacije. Kada se funkcija useUserRole izveze, ona moze biti uvezena i
koris¢ena u razli¢itim komponentama, konkretno ovde u Navbar.vue

e return: u Vue.js kompozibilnim funkcijama, return vra¢a objekte ili funkcije koje su
dostupne komponentama koje koriste ovu kompozibilnu funkciju. U ovom slucaju,
vracaju se userRole i checkUserRole, omoguéavaju¢i komponentama pristup
reaktivnoj promenljivoj userRole i funkciji checkUserRole.

34

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

3. onMounted funkcija

onMounted(() => {
checkUserRole();

1)

onMounted funkcija se koristi da izvrSi odredeni kod kada se komponenta ucita. U ovom
sluCaju, kad se stranica ucita, poziva se funkcija checkUserRole koja proverava koju ulogu
ima korisnik (administrator ili profesor).

4. Logika za proveru aktivnog linka

const isActivelink = (routePath) => {
const route = useRoute();
return route.path === routePath;

};

Funkcija isActiveLink proverava da li je trenutni link na kojem se korisnik nalazi aktivan. Na
primer, ako je korisnik na stranici "Studenti", ova funkcija ¢e vratiti true za tu putanju, a false
za sve ostale. Na ovaj nac¢in moze se stilizovati aktivni link da se istiCe u meniju:

<li :class="{ 'nav-item': true, active: isActivelLink('/studenti') }">
<RouterLink class="nav-1link" to="/studenti">Studenti</RouterLink>
</1i>

Direktiva : class u Vue.js omogucava dinamic¢ko dodavanije klasa HTML elementima. U ovom
primeru, Koristi se za dodavanje klasa nav-itemiactive elementuna osnovu
odredenih uslova.
e ‘'nav-item': true: Ovo znaCi da c¢e klasanav-itemuvek biti dodata
elementu <1i>.
e active: isActivelLink('/studenti'): Ovo znadi da ¢e klasa active biti dodata
elementu samo ako funkcija isActivelLink('/studenti') vrati true.

5. Odjava korisnika

const handleLogout = async () => {

try {
localStorage.removeltem("access_token");
router.push("/login").then(() => toast.success("UspesSno ste se

odjavili."));
} catch (error) {
toast.error(error.response.data.message || error.message);

}

35

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

}s

Ova funkcija se koristi za odjavu korisnika. Kada korisnik klikne na dugme za odjavu, funkcija
briSe njegov token za pristup iz lokalne memorije i preusmerava ga na stranicu za prijavu.
Takode, prikazuje se obavestenje da je korisnik uspesno odjavljen. Ovako izgleda dugme za
odjavu:

<form class="d-flex" @submit.prevent="handlelLogout">
<button type="submit" class="btn btn-primary">
<1 class="fas fa-sign-out-alt"></i>
</button>
</form>

@submit.prevent je direktiva koja spreCava podrazumevano ponaSanje forme (npr.
osveZavanje stranice) i izvrSava navedenu funkciju.

6. Rutiranje (navigacija izmedu stranica)

<RouterLink class="nav-1link" to="/studenti">Studenti</RouterLink>

RouterLink je specijalan element iz vue-router paketa koji omoguéava kreiranje linkova
izmedu razli¢itih stranica u aplikaciji. U ovom primeru, klikom na "Studenti", korisnik se
prebacuje na stranicu sa spiskom studenata.

7. v-if direktiva

<li v-if="userRole === 'administrator'">

v-if je Vue direktiva koja omogucava prikazivanje ili sakrivanje odredenih elemenata na
osnovu uslova. U ovom slucaju, proverava se da li je korisnik administrator. Ako jeste,
prikazuju se odredeni linkovi kao Sto su "Predmeti" i "Korisnici". Ako nije, ti linkovi nece biti
prikazani.

8. Prikazivanje Navbar.vue na svim stranicama osim na Login

Potrebno je izmeniti App.vue tako da se primeni logika za prikazivanje ili sakrivanje
navigacionog menija Navbar.vue na osnovu trenutne rute.

<script setup>
import { RouterLink, RouterView } from "vue-router";
import Navbar from "./components/Navbar.vue";

36

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

</script>

<template>
<div>
<Navbar v-if="$route.name !== 'Login
<RouterView></RouterView>
</div>
</template>

></Navbar>

<style>
/* Stilovi za aplikaciju */
</style>

App.vue izvorni kod

e <Navbar v-if=“$route.name !== €Login’”>: Ova linija koristi Vue direktivu v-
if da uslovno prikaze komponentu Navbar.vue samo ako trenutna ruta nije Login.
$route.name je svojstvo koje vraéa ime trenutne rute.

e RouterViewje komponenta koja prikazuje odgovarajuéu komponentu za trenutnu
rutu.

5.3 components/TableContainer.vue

Potrebno je u folder components kreirati novi fajl | nazvati ga TableContainer.vue. Ova
komponenta sluzi da se isti stil primeni za svako prikazivanje entiteta (studenata, predmeta |
korisnika) u tabele. Osim primene istog stila, ovim se izbegava ponavljanje pisanja dugmeta
koje vodi do stranice kreiranja entiteta.

<script setup>
import { defineProps } from "vue";
import { RouterLink } from "vue-router";

const props = defineProps({
to: {
type: String,
required: true,
}s
buttonText: {
type: String,
required: true,
}s
}s

</script>

<template>
<div class="container">

37

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

<div class="row">
<div class="my-5 justify-content-end">
<RouterLink :to="to" role="button" class="btn btn-primary">
{{ buttonText }}
</RouterLink>
</div>
<div class="row">
<table class="table">
<thead class="thead-dark">
<slot name="table-header"></slot>
</thead>
<tbody>
<slot name="table-body"></slot>
</tbody>
</table>
</div>
</div>
</div>
</template>

TableContainer.vue izvorni kod

1. Importovanje

import { defineProps } from "vue";
import { RouterLink } from "vue-router";

o defineProps je funkcija iz Vue.js koja omogucava definisanje svojstava (props) koje
komponenta moze primiti. Ovo omoguc¢ava komponenti da bude fleksibilna i ponovo

upotrebljiva.

e RouterLink je komponenta iz vue-router paketa koja omogucava navigaciju izmedu
razli¢itih ruta unutar aplikacije. Koristi se za kreiranje linkova koji vode do drugih

stranica.

2. Vue.Js defineProps

const props = defineProps({
to: {
type: String,
required: true,
}s
buttonText: {
type: String,
required: true,

38

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

}s
1)

e props: Objekat koji definiSe svojstva koja komponenta moze primiti. U ovom slucaju,
komponenta o¢ekuje dva svojstva:
o to: String koji predstavlja putanju do koje RouterLink vodi. Ovo svojstvo je
obavezno.
o buttonText: String koji predstavlja tekst koji ¢e biti prikazan na dugmetu. Ovo
svojstvo je takode obavezno.

<RouterLink :to="to" role="button" class="btn btn-primary">
{{ buttonText }}
</RouterLink>

U gorenavedenom kodu nalazi se primena props svojstava:

e <RouterLink>: Ovo je komponenta iz vue-router paketa koja omoguéava navigaciju
izmedu razli¢itih ruta unutar Vue.js aplikacije. Koristi se za kreiranje linkova koji vode
do drugih stranica.

e :to=“to”: Direktiva :to (bind) koristi vrednost to iz props objekta. Ovo svojstvo
definie putanju do koje ¢e link voditi. Na primer, ako je to="/studenti", klikom na
link korisnik ¢e biti preusmeren na stranicu sa putanjom /studenti.

e role="“button”: HTML atribut role postavlja ulogu elementa. U ovom
slu€aju, role="button" oznaCava da se ovaj link ponasa kao dugme, $to moZze biti
korisno za pristupacnost (accessibility).

e class=“btn btn-primary”: Atribut class dodaje CSS klase elementu. U ovom
slu¢aju, koristi se Bootstrap klasa btn btn-primary koja stilizuje link kao primarno
dugme.

e {{ buttonText }}: Unutar dvostrukih vitiCastih zagrada nalazi se buttonText, Sto
je vrednost iz props objekta. Ovo svojstvo definiSe tekst koji ¢e biti prikazan na
dugmetu. Na primer, ako je buttonText="Dodaj studenta", tekst na dugmetu ce
biti “Dodaj studenta”.

3. Slotovi

<table class="table">
<thead class="thead-dark">
<slot name="table-header"></slot>
</thead>
<tbody>
<slot name="table-body"></slot>
</tbody>
</table>

e <thead class="thead-dark”>: Ovo je deo tabele koji predstavija zaglavlje tabele.
Klasa thead-dark koristi Bootstrap stilove za tamno zaglavlje.

39

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

<slot name="table-header”></slot>: Slot sa imenom table-header. Slotovi su mesta
u komponenti gde se moZe umetnuti sadrZaj iz roditeljske komponente. U ovom
slu¢aju, sadrzaj koji se umetne u slot sa imenom table-header ¢e biti prikazan
unutar <thead> elementa.

<tbody>: Ovo je deo tabele koji predstavlja telo tabele.

<slot name="table-body” ></slot>: Slot sa imenom table-body. Sadrzaj umetnut u
slot sa imenom table-body ¢e biti prikazan unutar <tbody> elementa.

Slotovi: Slotovi omogucavaju umetanje dinami¢kog sadrzaja u komponentu. U ovom slucaju,
slotovi table-header i table-body omogucavaju umetanje prilagodenog zaglavlja i tela tabele
iz roditeljske komponente:

<slot name="table-header” ></slot>: Ovaj slot omoguc¢ava umetanje prilagodenog
sadrZaja u zaglavlje tabele. Na primer, roditeljska komponenta mozZze umetnuti kolone
zaglavlja tabele.

<slot name="table-body” ></slot>: Ovaj slot omoguéava umetanje prilagodenog
sadrZaja u telo tabele. Na primer, roditeljska komponenta mozZze umetnuti redove sa
podacima.

Primer umetanja sadrzaja pomocu slotova:

<template>
<TableContainer to="/korisnik-novi" buttonText="Dodaj korisnika">

<template #table-header> //umetanje u slot

<tr>
<th scope="col">Ime</th>
<th scope="col">Prezime</th>
<th scope="col">Email</th>
<th scope="col">Rola</th>
</tr>

</template>
<template #table-body> //umetanje u slot

<tr v-for="korisnik in korisnici" :key="korisnik.id">
<td>{{ korisnik.ime }}</td>
<td>{{ korisnik.prezime }}</td>
<td>{{ korisnik.email }}</td>
<td>{{ korisnik.rola }}</td>
</tr>

</template>

</TableContainer>
</template>

40

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

5.4 components/FormContainer.vue

Potrebno je u folder components kreirati novi fajl | nazvati ga FormContainer.vue. Ova
komponenta sluzi da se isti stil primeni za svaku formu prilikom kreiranja | izmene entiteta
(studenata, predmeta | korisnika).

<script setup>
import { defineProps } from "vue";

const props = defineProps({
title: {
type: String,
required: true,
3
1)

</script>

<template>
<div class="container">
<div class="row">
<div class="col-1g-6 col-12">
<div class="my-5">
<h3>{{ title }}</h3>
</div>
<slot></slot>
</div>
</div>
</div>
</template>

TableContainer.vue izvorni kod

5.5 components/DeleteModal.vue

Potrebno je u folder components kreirati novi fajl | nazvati ga DeleteModal. vue. Ovaj modal
Ce se prikazazi svaki put kada korisnik Zeli da izvrSi akciju brisanja entiteta.

<script setup>
<script setup>
import { ref, defineExpose, onMounted, onBeforeUnmount } from "vue";

const props = defineProps({
title: {
type: String,
default: "Potvrda brisanja",

}s

41

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

message: {
type: String,
default: "Da 1i ste sigurni da Zelite da obriSete stavku?",
3
onConfirm: {
type: Function,
required: true,
3
}s

const modalElement = ref(null);
let modalInstance = null;

const showModal = () => {
if (modallnstance) {
modalInstance.show();

}
}s

const hideModal = () => {
if (modallnstance) {
modalInstance.hide();

}
}s

const handleConfirm = () => {
props.onConfirm();
hideModal();

}s

onMounted(() => {
modalInstance = new bootstrap.Modal(modalElement.value);

1)

onBeforeUnmount(() => {
if (modallnstance) {
modalInstance.dispose();

}
})s

defineExpose({ showModal, hideModal });
</script>

<template>
<div
class="modal fade"
ref="modalElement"

42

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

tabindex="-1"
aria-labelledby="deleteModallLabel™
aria-hidden="true"

<div class="modal-dialog">
<div class="modal-content">
<div class="modal-header">
<h5 class="modal-title" id="deleteModallLabel">{{ title }}</h5>
<button
type="button"
class="btn-close"
data-bs-dismiss="modal"
aria-label="Close"
></button>
</div>
<div class="modal-body">
{{ message }}
</div>
<div class="modal-footer">
<button
type="button"
class="btn btn-secondary"”
data-bs-dismiss="modal"

Otkazi
</button>
<button type="button" class="btn btn-danger"
@click="handleConfirm">
Obrisi
</button>
</div>
</div>
</div>
</div>
</template>

DeleteModal.vue izvorni kod

1. Importovanje

import { ref, defineExpose, onMounted, onBeforeUnmount } from "vue";

o defineExpose dolaziiz Vue.js-a i koristi se da se eksplicitno izloZe odredene metode
ili promenljive iz jedne komponente, kako bi ih roditeljska komponenta mogla koristiti:

defineExpose({ showModal, hideModal });

43

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

Konkretno u ovom primeru, izloZene su funkcije showModal i hideModal, tako da neka
druga komponenta moze kontrolisati modal, odnosno da ga prikaze ili sakrije.

e onMounted:

onMounted(() => {
modalInstance = new bootstrap.Modal(modalElement.value);

})s

Konkretno u ovom primeru:
0 modalInstance = new bootstrap.Modal(modalElement.value) kreira
novu instancu Bootstrap-ovog modalnog dijaloga.
= modalElement.value je referenca na HTML element koji predstavlja
modal (to je div sa ref="modalElement" u template-u):

<template>
<div
class="modal fade"
ref="modalElement"
tabindex="-1"
aria-labelledby="deleteModallLabel™

* new bootstrap.Modal(...) koristi Bootstrap-ovu biblioteku da kreira
instancu modala koja omogucava interakciju s modalom (npr.
otvaranje, zatvaranje, i upravljanje modalnim dijalogom).

¢ onBeforeUnmount dolazi iz Vue.js-a i koristi se za izvrSavanje nekog koda pre nego
8to komponenta bude uklonjena sa ekrana. To mozZe biti korisno za Cid¢enje resursa,
na primer uklanjanje event listener-a ili oslobadanje memorije:

onBeforeUnmount(() => {
if (modallnstance) {
modalInstance.dispose();

}
1)

Konkretno u ovom primeru:

o Proverava se da li postoji instanca modala (modalInstance), koja je ranije
kreirana pomocu Bootstrapove metode.

0 Ako postoji, poziva se metoda dispose(), koja dolazi iz Bootstrapovog API-
ja. Ova metoda uklanja sve event listenere i druge resurse povezane sa
modalom kako bi se izbeglo curenje memorije.

0 Drugim re€ima, pozivom dispose() Bootstrap modal se "deaktivira" i uklanjaju
se svi resursi koji su bili potrebni za njegov rad.

44

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

2. Props

const props = defineProps({
title: {
type: String,
default: "Potvrda brisanja",

}s
message: {

type: String,

default: "Da 1i ste sigurni da Zelite da obriSete stavku?",
}s

onConfirm: {
type: Function,
required: true,
}s
});

e U ovom slu€aju, props omogucava da roditeljska komponenta prosledi naslov
(title), poruku (message), i funkciju za potvrdu brisanja (onConfirm) ovoj modalnoj
komponenti.

0 titleimessage imaju unapred definisane vrednosti koje ¢ée se koristiti ako ih
roditeljska komponenta ne prosledi.

0 onConfirm je funkcija koja je obavezna i koja se mora proslediti kako bi
komponenta radila pravilno. Ova funkcija se poziva kada korisnik potvrdi
brisanje stavke.

3. Promenljive | funkcije

const modalElement = ref(null);
let modallInstance = null;

const showModal = () => {
if (modallnstance) {
modalInstance.show();
}
}s

const hideModal = () => {
if (modallnstance) {
modalInstance.hide();
}
}s

const handleConfirm = () => {
props.onConfirm();

45

}s

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

hideModal();

modalElement: Ovo je ref koji dolazi iz Vue.js-a i koristi se za referenciranje
elementa u DOM-u.
modalElement se ovde koristi za Cuvanje referenci na HTML element modala
(konkretno <div> element koji sadrzi Bootstrap modal).
o ref(null): Postavlja inicijalnu vrednost na null, Sto znaci da referenca jo$ nije
postavljena, dok se modal ne prikaze u DOM-u.
o0 Kasnije, kada je komponenta montirana (onMounted), modalElement c¢e
sadrzati referencu na stvarni HTML element modala.

modalInstance: Ova promenljiva uva instancu Bootstrap modala, koja se dobija pri
kreiranju modala sa new bootstrap.Modal().
0 U pocetku, vrednost joj je null, jer modal joS$ nije kreiran.
0 Kada se komponenta montira (onMounted), modalinstance se kreira i dobija
vrednost stvarne Bootstrap modal instance, $to omogucava kontrolu nad
modalom (kao 5to su metode show(), hide(), dispose()).

showModal: Ova funkcija se koristi za prikazivanje modala.

o Prvo proverava da li postoji instanca modala (modalInstance).

0 Ako postoji, koristi Bootstrap metodu show() koja prikazuje modal.

o Ova funkcija se eksplicitno izlaze kroz defineExpose kako bi roditeljska
komponenta mogla pozvati showModal i tako prikazati modal u odredenom
trenutku.

hideModal: Ova funkcija sakriva modal.
o Sli¢no kao kod showModal, proverava da li postoji instanca modala.
0 Ako postoji, poziva se Bootstrap metoda hide(), koja zatvara modal.

handleConfirm: Ova funkcija se poziva kada korisnik klikne na dugme za potvrdu
brisanja u modalnom prozoru.

0 Prvo poziva funkciju props.onConfirm(), koja je prosledena kao prop iz
roditeljske komponente. Ova funkcija definiSe Sta ¢ée se desiti kada korisnik
potvrdi brisanje (npr. brisanje stavke iz baze).

o0 Nakon toga, poziva funkciju hideModal() kako bi sakrila modal nakon Sto
korisnik potvrdi akciju.

4. Primer koriséenja DeleteModal komponente

<script setup>

import DeleteModal from "@/components/DeleteModal.vue";

46

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

const predmetToDelete = ref(null);
const confirmModalRef = ref(null);

const confirmDelete = (predmet) => {
predmetToDelete.value = predmet;
confirmModalRef.value.showModal();

}s

const deletePredmet = async () => {
try {
const response = await axios.delete(
*/api/predmet-brisanje/${predmetToDelete.value.id}"

)
predmeti.value = predmeti.value.filter(

(predmet) => predmet.id !== predmetToDelete.value.id
)

predmetToDelete.value = null;
toast.success(response.data.message);
} catch (error) {

toast.error(error.response.data.message || error.message);
}
s
</script>
<template>
<button
@click="confirmDelete(predmet)"
class="text-danger mx-1 btn btn-1link"
>
<DeleteModal

ref="confirmModalRef"
:title=""'Potvrda brisanja'"
:message=""'Da 1i ste sigurni da zelite da obriSete predmet?'"
:onConfirm="deletePredmet"
/>

</template>

Predmeti.vue izvorni kod - view za prikaz predmeta

47

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

e Povezanost izmedu confirmModalRef i modalElement:

(0]

confirmModalRef: Ova referenca se koristi u roditeljskoj komponenti za
direktan pristup DeleteModal komponenti. Pomocu confirmModalRef mogu
se pozivati metode unutar DeleteModal komponente, poput showModal() i
hideModal().

modalElement: Ovo je referenca unutar DeleteModal komponente, gde se
modal (HTML element) povezuje sa Bootstrap modal instancom. Kada se
DeleteModal prikaZe, modalElement se koristi da se manipuliSe Bootstrap
modal prozorom.

Kada se u roditeljskoj komponenti pozove
confirmModalRef.value.showModal(), unutar DeleteModal komponente,
metoda showModal() koristi modalElement da prikaZze Bootstrap modal
prozor.

e Funkcija confirmDelete:

(0]

Kada korisnik klikne na dugme za brisanje nekog predmeta, funkcija
confirmDelete postavlja predmet koji treba da se obriSe u promenljivu
predmetToDelete.

Zatim, poziva se metoda showModal() na confirmModalRef, Sto otvara
modalni prozor za potvrdu brisanja.

e Funkcija deletePredmet

(0]
(0]

Kada korisnik potvrdi brisanje, funkcija deletePredmet se izvrSava.

Prvo se Salje DELETE zahtev ka API-ju koriste¢i axios, gde se predmet koji
treba obrisati identifikuje pomocu predmetToDelete.value.id.

Nakon uspesSnog brisanja, predmet se uklanja iz lokalne liste
(predmeti.value) pomocu filter metode.

Ako je brisanje uspeSno, prikazuje se poruka o uspehu koristeéi
toast.success(). Ako dode do greSke, prikazuje se odgovaraju¢a poruka o
gresci.

e DeleteModal props:

<DeleteModal
ref="confirmModalRef"
:title=""'Potvrda brisanja'"

.message=

Da li ste sigurni da zelite da obrisSete predmet?'"

:onConfirm="deletePredmet"

/>

title: Ovaj prop se koristi za prikazivanje naslova u modalnom prozoru. U
ovom slu€aju, naslov je "Potvrda brisanja".

message: Ovaj prop definiSe poruku unutar modalnog prozora. U ovom
slu€aju, poruka je "Da li ste sigurni da Zelite da obriSete predmet?".

48

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

o onConfirm: Ovaj prop je funkcija koja se izvrSava kada korisnik potvrdi akciju
u modalnom prozoru. U ovom slucaju, funkcija deletePredmet se izvrSava
kako bi obrisala izabrani predmet

49

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

6. Kreiranje stranica za manipulaciju korisnicima

6.1 views/KorisnikNovi.vue

Potrebno je u folder views kreirati novi fajl | nazvati ga KorisnikNovi.vue. Predstavljace
stranicu za kreiranje novih korisnika.

<script setup>

import { ref } from "vue";

import axios from "axios";

import { toast } from "vue3-toastify";

import { useRouter } from "vue-router";

import FormContainer from "@/components/FormContainer.vue";

const router = useRouter();

const ime = ref("");
const prezime = ref("");
const email = ref("");
const rola = ref("");
const lozinka = ref("");

const handleSubmit = async (event) => {
event.preventDefault();
try {
const response = await axios.post("/api/korisnik-novi", {
ime: ime.value,
prezime: prezime.value,
email: email.value,
rola: rola.value,
lozinka: lozinka.value,
}s
router.push("/korisnici").then(() =>
toast.success(response.data.message));
} catch (error) {
toast.error(error.response.data.message || error.message);
}
s

</script>

<template>
<FormContainer title="Novi korisnik">
<form @submit="handleSubmit">
<div class="mb-3">

<label for="ime" class="form-label">Ime</label>

<input
type="text"
class="form-control™

50

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

id="ime"
v-model="ime"
required
/>
</div>

<div class="mb-3">
<label for="prezime" class="form-label">Prezime</label>
<input
type="text"
class="form-control™
id="prezime"
v-model="prezime"
required
/>
</div>

<div class="mb-3">
<label for="email" class="form-label">Email</label>
<input
type="email"
class="form-control™
id="email"
v-model="email"
required
/>
</div>

<div class="mb-3">
<label for="rola" class="form-label">Rola</label>
<select id="rola" class="form-select"” v-model="rola" required>
<option selected disabled value="">Izaberi rolu</option>
<option value="administrator">Administrator</option>
<option value="profesor">Profesor</option>
</select>
</div>

<div class="mb-3">
<label for="lozinka" class="form-label”>Lozinka</label>
<input
type="password"
class="form-control™
id="lozinka"
v-model="1lozinka"
required
/>
</div>

51

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

<button type="submit" class="btn btn-primary">Sacuvaj</button>

</form>
</FormContainer>
</template>

KorisnikNovi.vue izvorni kod

10. Importovanje

import FormContainer from "@/components/FormContainer.vue";

11.

Iz foldera components potrebno je da se uveze FormContainer komponenta koja je
obradena u prethodnom poglavlju. Ona ,omotava“® formu $to omogucéava
standardizovan izgled i strukturu.

Promenljive

const

const
const
const
const
const

router = useRouter();

ime = ref("");
prezime = ref("");
email = ref("");
rola = ref("");
lozinka = ref("");

ime, prezime, email, rola, lozinka: Reaktivhe promenljive koje €uvaju unos
korisnika u odgovarajuéa polja. Koriste¢i v-model direktivu, vrednosti ovih polja se
automatski sinhronizuju sa podacima u formi:

<input

type="text"
class="form-control"
id="ime"
v-model="ime"
required

/>

router: instanca router-a koja se koristi za navigaciju.

52

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

12. Funkcija handleSubmit

const handleSubmit = async (event) => {
event.preventDefault();
try {
const response = await axios.post("/api/korisnik-novi", {
ime: ime.value,
prezime: prezime.value,
email: email.value,
rola: rola.value,
lozinka: lozinka.value,

1)

router.push("/korisnici").then(() =>
toast.success(response.data.message));
} catch (error) {
toast.error(error.response.data.message || error.message);
}
s
e handleSubmit: Funkcija koja se poziva pri slanju forme. Ova funkcija:
0 SpreCava podrazumevano ponaSanje forme (osvezavanje stranice)

koris¢enjem event.preventDefault().

o Salje POST zahtev na /api/korisnik-novi, prosledujuéi podatke unesene u formu

(ime, prezime, email, rola, lozinka).

0 U slu€aju uspesnog odgovora, korisnik se preusmerava na stranicu sa spiskom

korisnika, a notifikacija o uspehu se prikazuje pomoc¢u toast.success.

0 Ako dode do greSke, prikazuje se odgovarajuca notifikacija pomocu

toast.error.

13. Props u FormContainer-u

<FormContainer title="Novi korisnik">

</FormContainer>

o title: Prikazuje naslov forme (u ovom sluc€aju "Novi korisnik").

e Ovaj prop olakSava ponovnu upotrebu komponente FormContainer za razliCite forme

sa razli¢itim naslovima.

14. Registrovanje /korisnik-novi rute

53

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

Potrebno je u fajlu router/index. js registrovati rutu za kreiranje novog korisnika. Kada se
pristupi URL-u: http://localhost:5173/korisnik-novi, uCitate se gorenavedena
KorisnikNovi.vue komponenta. Pored toga, potrebno je implementirati funkciju za rutiranje
koja ¢e proveravati da li korisnik ima odgovarajucu ulogu (rolu) za pristup odredenim rutama.
Korisnicima i predmetima moze upravljati samo administrator, dok studentima mogu upravljati
i administrator i profesor. Ako korisnik nema odgovaraju¢u ulogu, bice preusmeren na login
stranicu ili na drugu odgovarajucu rutu.

import { createRouter, createWebHistory } from "vue-router";
import KorisnikNovi from "@/views/KorisnikNovi.vue";
import Login from "@/views/Login.vue";

const routes = [
{
path: "/korisnik-novi",
name: "KorisnikNovi",
component: KorisnikNovi,
meta: { requiresRole: ["administrator"] },
}s
{
path: "/login",
name: "Login",
component: Login,
}s
1

const router = createRouter({
history: createWebHistory(import.meta.env.BASE_URL),
routes,

s

router.beforeEach((to, from, next) => {
const role = localStorage.getItem("rola");

if (role) {
if (to.meta.requiresRole && !to.meta.requiresRole.includes(role)) {
return next("/login");

}

} else if (to.meta.requiresRole) {
return next("/login");

}

next();
1

export default router;

router/index.js izvorni kod

54

http://localhost:5173/korisnik-novi

6.2

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

Funkcija router.beforeEach:

0 Funkcija router.beforeEach se koristi za presretanje svake navigacije
izmedu ruta. Ona omogucava postavljanje provera i logike pre nego Sto korisnik
dobije pristup odabranoj ruti. U ovom slucaju, koristi se za proveru da li korisnik
poseduje odgovarajuéu rolu. Ako korisnik nema odgovarajuéu rolu,
preusmerava se na login stranicu ili na rutu kojoj ima pristup.

meta: { requiresRole: ["administrator"] }:
o Ovaj meta podatak definiSe koja rola ima pristup odredenoj ruti. U primeru je
navedeno da samo korisnici sa ulogom "administrator" mogu pristupiti ruti.
Meta podaci se ne izvrSavaju direktno, ve¢ omogucavaju koris¢enje dodatnih
provera unutar router.beforeEach funkcije, gde se provera uloge vrSi na
osnovu zahteva odredenih u meta.requiresRole.

views/Korisniklzmena.vue

Potrebno je u folder views kreirati novi fajl | nazvati ga KorisnikIzmena.vue. Predstavljace
stranicu za izmenu korisnika.

<scrip
import
import
import
import
import
import

const
const
const

const
const
const
const
const

const
try

t setup>
{ ref, onMounted } from "vue";
axios from "axios";

{ useRoute } from "vue-router";

{ useRouter } from "vue-router";

FormContainer from "@/components/FormContainer.vue”;
{ toast } from "vue3-toastify";

router = useRouter();
route = useRoute();
id = route.params.id;

ime = ref("");
prezime = ref("");
email = ref("");
rola = ref("");
lozinka = ref("");

fetchKorisnik = async () => {

{

const response = await axios.get(" /api/korisnik/${id});
ime.value = response.data.ime;

prezime.value = response.data.prezime;

email.value = response.data.email;

rola.value = response.data.rola;

} ca

tch (error) {

55

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

if (error.response.status == 401) {
router
.push("/login")
.then(() => toast.error(error.response.data.message));
} else {
toast.error(error.response.data.message || error.message);
}
¥
s

const handleSubmit = async (event) => {
event.preventDefault();
try {
const response = await axios.put(/api/korisnik-izmena/${id} , {
ime: ime.value,
prezime: prezime.value,
email: email.value,
rola: rola.value,
lozinka: lozinka.value,
})s
router.push("/korisnici").then(()
toast.success(response.data.message));
} catch (error) {

toast.error(error.response.data.message || error.message);
}
s
onMounted(() => {
fetchKorisnik();
}s
</script>
<template>

<FormContainer title="Izmena korisnika">
<form @submit="handleSubmit">
<div class="mb-3">
<label for="ime" class="form-label">Ime</label>
<input
type="text"
class="form-control™
id="ime"
v-model="ime"
required
/>
</div>

<div class="mb-3">

56

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

<label for="prezime" class="form-label">Prezime</label>
<input
type="text"
class="form-control™
id="prezime"
v-model="prezime"
required
/>
</div>

<div class="mb-3">
<label for="email" class="form-label">Email</label>
<input
type="email"
class="form-control™
id="email"
v-model="email"
required
/>
</div>

<div class="mb-3">
<label for="rola" class="form-label">Rola</label>
<select id="rola" class="form-select"” v-model="rola" required>
<option selected disabled value="">Izaberi rolu</option>
<option value="administrator">Administrator</option>
<option value="profesor">Profesor</option>
</select>
</div>

<div class="mb-3">
<label for="lozinka" class="form-label">Lozinka</label>
<input
type="password"
class="form-control™
id="lozinka"
v-model="1lozinka"
required
/>
</div>

<button type="submit" class="btn btn-primary">Sacuvaj</button>
</form>
</FormContainer>
</template>

KorisnikIzmena.vue izvorni kod

57

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

1. Importovanje

import { useRoute } from "vue-router";

e useRoute je funkcija iz Vue Router biblioteke koja omoguéava pristup trenutnoj ruti
unutar komponente. Ova funkcija vra¢a objekat koji sadrzi informacije o ruti, kao §to
su:

params: parametri rute, npr. id u ruti /korisnici/:id.

query: query parametri, npr. u ruti /korisnici?ime=Marko.

name: naziv rute ako je definisan u routes konfiguraciji.

path: puna putanja trenutne rute.

O O O o

2. Promenljive

const router = useRouter();
const route = useRoute();
const id = route.params.id;

const ime = ref("");
const prezime = ref("");
const email = ref("");
const rola = ref("");
const lozinka = ref("");

e ime, prezime, email, rola, lozinka: Reaktivne promenljive koje se koriste za
popunjavanje input polja sa podacima dobijenim sa servera. Koriste¢i v-model
direktivu, ove vrednosti su povezane sa podacima u formi.

e router i route: Omogucavaju navigaciju izmedu stranica i pristup parametrima u
URL-u (u ovom slucaju id korisnika).

3. Funkcija fetchKorisnik

const fetchKorisnik = async () => {

try {
const response = await axios.get(/api/korisnik/${id});
ime.value = response.data.ime;
prezime.value = response.data.prezime;
email.value = response.data.email;
rola.value = response.data.rola;

} catch (error) {

toast.error(error.response.data.message || error.message);

}
}

58

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

}s

e Ovafunkcija Salje GET zahtev na /api/korisnik/${id} kako bi dohvatila podatke korisnika
sa servera. Nakon uspe3nog odgovora, polja u formi (ime, prezime, email, rola)
se popunjavaju vrednostima koje su dobijene sa servera pomocéu ref promenljivih.

4. Funkcija handleSubmit

const handleSubmit = async (event) => {
event.preventDefault();
try {
const response = await axios.put(/api/korisnik-izmena/${id} , {
ime: ime.value,
prezime: prezime.value,
email: email.value,
rola: rola.value,
lozinka: lozinka.value,
})s
router.push("/korisnici").then(() =>
toast.success(response.data.message));
} catch (error) {
toast.error(error.response.data.message || error.message);
}
s

¢ Funkcija koja Salje PUT zahtev za izmenu podataka korisnika na osnovu unosa u formi.
U sluaju uspesSnog zahteva, korisnik se preusmerava na stranicu sa spiskom
korisnika i prikazuje se notifikacija o uspehu.

5. Props u FormContainer-u

<FormContainer title="Izmena korisnika">

</FormContainer>

e title: Prikazuje naslov forme (u ovom slu¢aju "Izmena korisnika").

6. Registrovanje /korisnik-izmena rute

59

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

Potrebno je u fajlu router/index.js registrovati rutu za izmenu korisnika. Kada se pristupi
URL-u: http://localhost:5173/korisnik-izmena/:id, ucitace se gorenavedena
KorisnikIzmena.vue komponenta. Pored toga, potrebno je da ova ruta bude zasti¢ena, i da
moze da joj pristupi samo korisnik sa ulogom administratora.

import { createRouter, createWebHistory } from "vue-router";
import KorisnikNovi from "@/views/KorisnikNovi.vue";

import KorisnikIzmena from "@/views/KorisnikIzmena.vue";
import Login from "@/views/Login.vue";

const routes = [
{
path: "/korisnik-novi",
name: "KorisnikNovi",
component: KorisnikNovi,
meta: { requiresRole: ["administrator"] },
}s
{
path: "/korisnik-izmena/:id",
name: "KorisnikIzmena",
component: KorisnikIzmena,
props: true,
meta: { requiresRole: ["administrator"] },
}s
{
path: "/login",
name: "Login",
component: Login,
}s
1

const router = createRouter({
history: createWebHistory(import.meta.env.BASE_URL),
routes,

1)

router.beforekach((to, from, next) => {
const role = localStorage.getItem("rola");

if (role) {
if (to.meta.requiresRole && !to.meta.requiresRole.includes(role)) {
return next("/login");

}

} else if (to.meta.requiresRole) {
return next("/login");

}

60

http://localhost:5173/korisnik-izmena/:id

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

next();
})s

export default router;

router/index.js izvorni kod

e meta: { requiresRole: ["administrator"] }:
o Ovaj meta podatak se dodaje | za rutu /korisnik-izmena/:id, kao | kod stranice
za kreiranje novih korisnika.

6.3 views/Korisnici.vue

Potrebno je u folder views kreirati novi fajl | nazvati ga Korisnici.vue. Predstavljaée stranicu
za prikazivanje svih korisnika.

<script setup>

import { ref, onMounted } from "vue";

import axios from "axios";

import { toast } from "vue3-toastify";

import { useRouter, RouterLink } from "vue-router”;

import TableContainer from "@/components/TableContainer.vue";
import DeleteModal from "@/components/DeleteModal.vue";

const korisnici = ref([]);
const korisnikToDelete = ref(null);
const confirmModalRef = ref(null);
const router = useRouter();

const fetchKorisnici = async () => {
try {
const response = await axios.get("/api/korisnici");
korisnici.value = response.data;
} catch (error) {
toast.error(error.response.data.message || error.message);
}
s

const confirmDelete = (korisnik) => {
korisnikToDelete.value = korisnik;
confirmModalRef.value.showModal();

¥
const deleteKorisnik = async () => {

try {
const response = await axios.post(

61

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

" /api/korisnik-brisanje/${korisnikToDelete.value.id}"

)
korisnici.value = korisnici.value.filter(

(korisnik) => korisnik.id !== korisnikToDelete.value.id
)

korisnikToDelete.value = null;

confirmModalRef.value.hideModal();

toast.success(response.data.message);
} catch (error) {

toast.error(error.response.data.message || error.message);
}
}s
onMounted(() => {
fetchKorisnici();
}s
</script>
<template>

<TableContainer to="/korisnik-novi" buttonText="Dodaj korisnika">
<template #table-header>
<tr>
<th scope="col">Ime</th>
<th scope="col">Prezime</th>
<th scope="col">Email</th>
<th scope="col">Rola</th>
<th scope="col">Akcija</th>
</tr>
</template>
<template #table-body>
<tr v-for="korisnik in korisnici" :key="korisnik.id">
<td>{{ korisnik.ime }}</td>
<td>{{ korisnik.prezime }}</td>
<td>{{ korisnik.email }}</td>
<td>{{ korisnik.rola }}</td>
<td>
<button
@click="router.push(" /korisnik-izmena/${korisnik.id})"
role="button"
class="text-warning mx-1 btn btn-1link"

<i class="fas fa-edit"></i>

</button>

<button
@click="confirmDelete(korisnik)"
class="text-danger mx-1 btn btn-1link"

62

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

<i class="fas fa-trash"></i>
</button>
</td>
</tr>
</template>
</TableContainer>

<DeleteModal
ref="confirmModalRef"
:title=""'Potvrda brisanja'"
:message="'Da 1li ste sigurni da zelite da obriSete korisnika?'"
:onConfirm="deleteKorisnik"
/>
</template>

KorisnikIzmena.vue izvorni kod

1. Importovanje

import TableContainer from "@/components/TableContainer.vue";
import DeleteModal from "@/components/DeleteModal.vue”;

e TableContainer i DeleteModal su prethodno kreirane komponente koje se koriste
za prikaz tabele korisnika i modala za potvrdu brisanja.

2. Promenljive

const korisnici = ref([]);

const korisnikToDelete = ref(null);
const confirmModalRef = ref(null);
const router = useRouter();

e korisnici: reaktivha promenljiva koja €uva listu svih korisnika.

e korisnikToDelete: koristi se za privremeno skladistenje podataka o korisniku koji ¢e
biti obrisan.

e confirmModalRef: referenca na modal za brisanje korisnika, omogucava prikaz i
skrivanje modala.

3. Funkcija fetchKorisnici

const fetchKorisnici = async () => {
try {

63

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

const response = await axios.get("/api/korisnici");
korisnici.value = response.data;

} catch (error) {
toast.error(error.response.data.message || error.message);

}
}s

e Ova funkcija Salje GET zahtev na /api/korisnici kako bi preuzela sve korisnike iz baze
podataka. Podaci o korisnicima se zatim smestaju u reaktivhu promenljivu korisnici.

4. Funkcija confirmDelete

const confirmDelete = (korisnik) => {
korisnikToDelete.value = korisnik;
confirmModalRef.value.showModal();

}s

¢ Ova funkcija se poziva kada korisnik klikne na dugme za brisanje. Postavlja korisnika
koji ¢e biti obrisan u promenljivu korisnikToDelete i prikazuje modal za potvrdu
brisanja.

5. Funkcija deleteKorisnik

const deleteKorisnik = async () => {
try {
const response = await axios.post(
“/api/korisnik-brisanje/${korisnikToDelete.value.id}"

)s
korisnici.value = korisnici.value.filter(

(korisnik) => korisnik.id !== korisnikToDelete.value.id
)s

korisnikToDelete.value = null;
confirmModalRef.value.hideModal();
toast.success(response.data.message);

} catch (error) {
toast.error(error.response.data.message || error.message);

}s

e Ova funkcija Salje POST zahtev na /api/korisnik-brisanje/${korisnikToDelete.value.id}
kako bi obrisala korisnika iz baze. Nakon uspesSnog brisanja, korisnik se uklanja iz liste
korisnici, modal se zatvara, a korisnik se informiSe o uspeSnom brisanju putem toast
notifikacije.

64

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

6. Registrovanje /korisnici rute

Potrebno je u fajlu router/index. js registrovati rutu za prikazivanje. Kada se pristupi URL-
u: http://localhost:5173/korisnici, ucitae se gorenavedena Korisnici.vue komponenta.
Pored toga, potrebno je da ova ruta bude zasti¢ena, i da mozZe da joj pristupi samo korisnik
sa ulogom administratora.

import { createRouter, createWebHistory } from "vue-router";
import Korisnici from "@/views/Korisnici.vue";

import KorisnikNovi from "@/views/KorisnikNovi.vue";

import KorisnikIzmena from "@/views/KorisnikIzmena.vue";
import Login from "@/views/Login.vue";

const routes = [
path: "/korisnici",
name: "Korisnici",
component: Korisnici,
meta: { requiresRole: ["administrator"] },

s
{
path: "/korisnik-novi",
name: "KorisnikNovi",
component: KorisnikNovi,
meta: { requiresRole: ["administrator"] },
3
{
path: "/korisnik-izmena/:id",
name: "KorisnikIzmena",
component: KorisnikIzmena,
props: true,
meta: { requiresRole: ["administrator"] },
3
{
path: "/login",
name: "Login",
component: Login,
}s
1

const router = createRouter({
history: createWebHistory(import.meta.env.BASE _URL),
routes,

})s

router.beforeEach((to, from, next) => {
const role = localStorage.getItem("rola");

65

http://localhost:5173/korisnici

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

if (role) {
if (to.meta.requiresRole && !to.meta.requiresRole.includes(role)) {
return next("/login");

}

} else if (to.meta.requiresRole) {
return next("/login");

}

next();
1)

export default router;

router/index.js izvorni kod

e meta: { requiresRole: ["administrator"] }:
0 Ovaj meta podatak se dodaje | za rutu /korisnici

66

[1]
[2]
[3]
[4]
[5]

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

LITERATURA

https://vuejs.org/quide/introduction.html

https://www.w3schools.com/vue/index.php

https://qgithub.com/bradtraversy/vue-crash-2024

https://getbootstrap.com/docs/5.3/getting-started/introduction/

https://fontawesome.com/

67

https://vuejs.org/guide/introduction.html
https://www.w3schools.com/vue/index.php
https://github.com/bradtraversy/vue-crash-2024
https://getbootstrap.com/docs/5.3/getting-started/introduction/
https://fontawesome.com/

	Cilj izrade projekta
	Vue.js radni okvir
	1. Inicijalizacija, konfiguracija projekta i instalacija biblioteka
	1.1 Koraci za konfiguraciju projekta

	2. Princip rada Vue.js-a
	2.1 Glavne komponente i objašnjenje strukture u Vue.js projektu

	3. Klijent server arhitektura
	3.1 Pojam API-ja
	3.2 Pojam Autentifikacije
	3.2.1 Autentifikacija kolačićima (engl. Cookie authentication)
	3.2.2 JWT Autentifikacija (engl. JSON Web Token authentication)

	3.3. Pojam autorizacije

	4. Izrada aplikacije
	4.1 Izgled aplikacije, stranice i rute
	4.2 Razdvajanje u komponente

	5. Kreiranje komponenti i stranice za login
	5.1 views/Login.vue
	5.2 components/Navbar.vue
	5.3 components/TableContainer.vue
	5.4 components/FormContainer.vue
	5.5 components/DeleteModal.vue

	6. Kreiranje stranica za manipulaciju korisnicima
	6.1 views/KorisnikNovi.vue
	6.2 views/KorisnikIzmena.vue
	6.3 views/Korisnici.vue

	LITERATURA

