

Akademija tehničko-vaspitačkih strukovnih studija
Niš

Predmet: Klijent server sistemi

Uputstvo za izradu projekta u Vue.js radnom okviru

Niš, oktobar 2024.

Sadržaj
Cilj izrade projekta ... 2

Vue.js radni okvir ... 2
1. Inicijalizacija, konfiguracija projekta i instalacija biblioteka 3

1.1 Koraci za konfiguraciju projekta ... 3
2. Princip rada Vue.js-a .. 10

2.1 Glavne komponente i objašnjenje strukture u Vue.js projektu 10
3. Klijent server arhitektura ... 14

3.1 Pojam API-ja .. 14
3.2 Pojam Autentifikacije .. 17

3.2.1 Autentifikacija kolačićima (engl. Cookie authentication) 17
3.2.2 JWT Autentifikacija (engl. JSON Web Token authentication) 18

4. Izrada aplikacije .. 21
4.1 Izgled aplikacije, stranice i rute .. 21
4.2 Razdvajanje u komponente .. 24

5. Kreiranje komponenti i stranice za login ... 25
5.1 views/Login.vue .. 25
5.2 components/Navbar.vue .. 31
5.3 components/TableContainer.vue ... 37
5.4 components/FormContainer.vue .. 41
5.5 components/DeleteModal.vue .. 41

6. Kreiranje stranica za manipulaciju korisnicima ... 50
6.1 views/KorisnikNovi.vue .. 50
6.2 views/KorisnikIzmena.vue .. 55
6.3 views/Korisnici.vue ... 61

LITERATURA ... 67

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

2

Klijent server sistemi

Uputstvo za izradu projekta u Vue.js radnom
okviru

Cilj izrade projekta
• Upoznavanje studenata sa osnovama komunikacije između klijenta i servera, kroz

implementaciju REST API-ja (engl. Representational State Transfer Application
Programming Interface)

• Razumevanje kako se koristi Vue.js za kreiranje dinamičnih korisničkih interfejsa i
upravljanje stanjem aplikacije.

• Savladavanje rada sa HTTP (engl. Hypertext Transfer Protocol) metodama putem
biblioteke Axios, u kontekstu Vue.js aplikacija.

• Učenje kako pravilno organizovati reusable komponente u Vue.js-u, s ciljem smanjenja
ponavljanja koda i poboljšanja modularnosti aplikacije.

• Savladvanje Bootstrap-a za kreiranje responzivnih korisničkih interfejsa, uključujući
rad sa modalima i formama.

• Primena koncepata upravljanja stanjem u Vue.js-u kroz "ref" i "props" sisteme, radi
efikasnog prenosa podataka između komponenti.

Vue.js radni okvir
Vue.js je progresivni JavaScript radni okvir za izradu korisničkih interfejsa i jednostraničnih
aplikacija SPA (engl. Single Page Application). Kreiran je 2014. godine od strane Evana You-
a, kao lakša i fleksibilnija alternativa za druge popularne radne okvire poput Angular-a i React-
a. Vue.js omogućava modularnu izgradnju aplikacija putem komponentnog pristupa, gde se
logika i prezentacija lako razdvajaju. Posebno je cenjen zbog jednostavne integracije u
postojeće projekte i mogućnosti postepenog usvajanja, što ga čini pogodnim za projekte svih
veličina.

Sl. Vue.js logotip

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

3

1. Inicijalizacija, konfiguracija projekta i instalacija biblioteka
Zadatak je izrada frontend dela veb aplikacije u kojoj profesori vode evidenciju o studentima,
predmetima i ocenama. Od funkcionalnosti je potrebno da ima login, logout, kreiranje,
iščitavanje, izmenu i brisanje studenata, predmeta, ocena i profesora (u daljem tekstu
korisnici). Za izradu, neophodna je instalacija određenih alata i biblioteka, kao i urađen
projekat u Flask radnom okviru (predmet Veb programiranje), modifikovan u backend API.

• Link do Evidencija studenata Flask API-ja: https://github.com/nevence/Klijent-Server-
Sistemi-Evidencija-studenata/tree/main/flask-api

1.1 Koraci za konfiguraciju projekta
1. Instalacija Node.js-a

• Node.js je okruženje koje omogućava pokretanje JavaScript koda van pretraživača.
Za rad sa Vue.js, Node.js je neophodan jer omogućava instalaciju paketa i pokretanje
lokalnog servera. Moguće ga je instalirati na zvaničnom Node.js sajtu:
https://nodejs.org/en/download/prebuilt-installer

• Na slici 1.1 prikazana je zvanična stranica za preuzimanje Node.js-a sa mogućnostima
odabira željene verzije, kao i operativnog sistema. Nakon skidanja željene instalacije,
potrebno ju je pokrenuti, I ispratiti korake kroz instalacioni čarobnjak. Na slici 2
prikazan je početak instalacije.

Sl. 1.1 Zvanični sajt za preuzimanje Node.js-a

https://github.com/nevence/Klijent-Server-Sistemi-Evidencija-studenata/tree/main/flask-api
https://github.com/nevence/Klijent-Server-Sistemi-Evidencija-studenata/tree/main/flask-api
https://nodejs.org/en/download/prebuilt-installer

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

4

Sl. 1.2 Pokretanje instalacije Node.js-a

2. Kreiranje novog Vue.js projekta pomoću Vite-a
• Potrebno je otvoriti Command prompt, navigirati do Desktop-a i pokrenuti komandu:

npm create vue@latest evidencija_studenata

• Za instaliranje dodatnih zavisnosti, odabrati samo Vue Router, koji će služiti za

rutiranje i navigaciju ka stranicama.
• Pokrenuti komande iz konzole za instalaciju:

cd evidencija_studenata
npm install

• Na slici 1.3 prikazana je konzola sa pokrenutim potrebnim komandama radi kreiranja
projekta.

Sl. 1.3 Kreiranje Vue.js projekta

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

5

3. Instalacija potrebnih biblioteka:
• Nakon instalacije projekta, potrebno je instalirati Axios biblioteku za slanje HTTP

zahteva pokretanjem komande u istoj konzoli:

npm install axios

• Za prikazivanje notifikacija u aplikaciji, potrebno je instalirati Vue 3 Toastify biblioteku
pokretanjem komande:

npm install vue3-toastify

• Na slici 1.4 prikazan je izgled konzole sa pokrenutim svim potrebnim komandama radi
intaliranja projekta I svih potrebnih biblioteka.

Sl. 1.4 Instalacija projekta, Axios i Vue 3 Toastify biblioteka

4. Brisanje nepotrebnih fajlova
• U istoj konzoli pokrenuti komandu za pokretanje aplikacije.:

 npm run dev

• Zatim je potrebno otvoriti projekat u VS Code-u. Vue projekat dolazi sa
podrazumevanim komponentama (engl. components) i pogledima (engl. views), koje
je potrebno obrisati i izmeniti.

• Na slici 1.5 prikazana je podrazumevana struktura novokreiranog Vue projekta, dok je
na slici 1.6 prikazana krajnja struktura koju je potrebno postići nakon brisanja svih
fajlova u components I views folderima.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

6

Objašnjenje same strukture I princip rada Vue.js-a biće u zasebnom poglavlju.

Sl. 1.5 Inicijalni novokreirani Vue

projekat

Sl. 1.6 Struktura projekta nakon brisanja

nepotrebnih fajlova

• Zatim je potrebno izmeniti router/index.js i App.vue fajlove tako da se obrišu

nepotrebne linije koda. Slika 1.7 prikazuje krajni router/index.js fajl, dok slika 1.8
prikazuje krajni App.vue fajl nakon brisanja.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

7

Sl. 1.7 Izmenjeni router/index.js fajl

Sl. 1.8 Izmenjeni App.vue fajl

5. Instalacija Bootstrap 5.3.3 i Font Awesome biblioteka za stilizaciju

• Za implementaciju ovih biblioteka, potrebno je izmeniti index.html tako da budu
uključeni potrebni CDN-ovi:

o https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/css/bootstrap.min.css
o https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/js/bootstrap.bundle.min.js
o https://kit.fontawesome.com/0660ce38c6.js

• Na slici 1.9 nalazi se index.html sa uključenim gorenavedenim CDN-ovima (engl.
Content Delivery Network).

https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/css/bootstrap.min.css
https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/js/bootstrap.bundle.min.js
https://kit.fontawesome.com/0660ce38c6.js

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

8

Sl. 1.9 Uključivanje Bootstrap-a i Font Awesome-a u index.html

6. Dodatne konfiguracije
• Kako bi Vue 3 Toastify biblioteka bila uključena u aplikaciju, potrebno je izmeniti

main.js i dodati odgovarajući kod koji je prikazan na slici 1.10.
• S obzirom da je potrebno da ova aplikacija konzumira Flask API koji se pokreće na

http://localhost:5000 URL-u (engl. Uniform Resource Locator), potrebno je izmeniti
vite.config.js tako da se za slanje HTTP zahteva omogući korišćenje “/api” alias-a
umesto http://localhost:5000. Izgled ove ismene prikazan je na slici 1.11.

Sl. 1.10 Izmena main.js fajla radi uključivanja Vue 3 Toastify biblioteke

http://localhost:5000/
http://localhost:5000/

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

9

Sl. 1.11 Izmena vite.config.js fajla radi korišćenja „/api” alias-a

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

10

2. Princip rada Vue.js-a
Vue.js je progresivni JavaScript framework za izradu korisničkih interfejsa UI (engl. User
Interface). Radi tako što omogućava razdvajanje logike aplikacije, njenog prikaza i
menadžmenta podataka u pojedinačne komponente. Vue koristi Virtual DOM (engl.Virtual
Document Object Model), što znači da ažurira samo one delove korisničkog interfejsa koji se
menjaju, čineći aplikaciju bržom i efikasnijom.

Vue.js aplikacija se sastoji od više komponenti. Svaka komponenta predstavlja jedan deo
interfejsa i sadrži HTML (engl. HyperText Markup Language) za prikaz, JavaScript za logiku,
I CSS (engl. Cascading Style Sheets) za stilizaciju. Komponente se međusobno povezuju,
deleći podatke kroz “props” (za prosleđivanje podataka roditelj-deca) i komunicirajući kroz
događaje. Vue.js koristi data-binding koji povezuje model podataka sa prikazom u realnom
vremenu. To znači da kad se podaci promene, Vue automatski ažurira prikaz korisniku bez
potrebe za ručnim manipulacijama DOM-om.

2.1 Glavne komponente i objašnjenje strukture u Vue.js projektu
1. node_modules/

• Ovaj folder sadrži sve instalirane Node.js pakete i biblioteke koje aplikacija koristi.
Ove biblioteke su navedene u package.json datoteci.

2. public/
• Ovaj folder sadrži statičke datoteke koje će biti direktno dostupne na vebu (npr.

slike, fontovi, favicon.ico). Vue ne vrši obradu ovih datoteka.
3. src/ (Source folder)

• Glavni folder za ceo kod. Ovde se nalazi aplikacija, njene komponente, rute,
globalni stilovi itd.

4. assets/
• Sadrži statičke resurse kao što su slike, CSS, ili fontovi koji će se obrađivati i

optimizovati kroz build alat (Vite ili Vue CLI (engl. Command Line Interface)).
Na primer, u ovom folderu se mogu čuvati slike logotipa, pozadinske slike ili fajlovi
sa stilovima (.css ili .scss).

5. components/
Sadrži Vue komponente. Komponente su osnovne građevne jedinice aplikacije, a
svaka komponenta može predstavljati deo korisničkog interfejsa (npr. dugme, tabela,
kartica). Primer, moguće je imati fajlove Navbar.vue, Sidebar.vue, Footer.vue,
koji čine različite delove korisničkog interfejsa.

6. router/
• Sadrži fajl index.js povezan sa Vue Router-om. Vue Router je deo aplikacije koji

omogućava upravljanje navigacijom između različitih delova aplikacije
(komponenti). On omogućava kreiranje SPA, gde navigacija ne osvežava celu
stranicu, već se dinamički menja sadržaj prikazan korisniku. U router/index.js,
rute se definišu kao na slici 2.1:

o path: URL putanja koja korisnika vodi do određene komponente.
o component: Komponenta koja će biti prikazana kada se korisnik nađe na

određenoj putanji.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

11

Sl. 2.1 router/index.js

7. store/

• Ovaj folder sadrži fajlove povezane sa Vuex-om, ako se koristi Vuex za globalno
stanje aplikacije. Vuex je biblioteka za centralizovano upravljanje podacima (engl.
state management) u Vue aplikacijama.

8. views/
• Sadrži komponente koje predstavljaju različite "stranice" aplikacije (poznate kao

poglede). Svaka stranica može biti povezana sa specifičnom rutom.
Primer: Home.vue, About.vue, Profile.vue. Ove komponente se obično
prikazuju pomoću <RouterView> u glavnoj aplikaciji (kao što je App.vue).

9. App.vue
• Ovo je koren (engl. root) komponenta Vue.js aplikacije. App.vue je obično

kontejner za druge komponente i koristi se kao glavna komponenta u koju se
učitavaju sve ostale komponente. Sadrži template (HTML), script (JavaScript),
i style (CSS).

o <template>: Sadrži HTML kod koji definiše kako će aplikacija biti
prikazana.

o <script>: Sadrži logiku aplikacije – može da upravlja stanjem, podacima,
događajima itd.

o <style>: Ovde se stilizuju elementi unutar komponente.
• U App.vue, sve što se stavi u <template> i <style> primenjuje se globalno na

celu aplikaciju, primer je Navbar komponenta sa slike 2.2, koja će biti vidljiva na
svim stranicama osim na login strani. RouterView služi za dinamičko prikazivanje

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

12

komponenata u zavisnosti od aktivne rute, omogućavajući da se samo sadržaj
unutar RouterView menja dok ostatak aplikacije ostaje isti.

Sl. 2.2 App.vue

10. main.js
• main.js je ulazna tačka (engl. entry point) aplikacije. On inicijalizuje Vue instancu i

povezuje aplikaciju sa HTML dokumentom (obično sa elementom koji ima
id="app"). Takođe može da učita globalne stilove, rute i druge osnovne
konfiguracije. Na slici 2.3 prikazan je primer main.js fajla.

Sl. 2.3 main.js

11. index.html
• Ovo je statički HTML fajl koji služi kao polazna tačka aplikacije. On sadrži <div>

element koji služi kao „sidro“ za Vue aplikaciju. Vue uzima ovaj statički sadržaj i
dinamički ga menja koristeći JavaScript, prikazujući komponente aplikacije.

• Kao na slici 2.4, Vue aplikacija je vezana za element sa id="app". Sve
komponente i prikaz će biti renderovani unutar ovog div elementa.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

13

Sl. 2.4 index.html

Sl. 2.5 Prikaz strukture Vue.js projekta

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

14

3. Klijent server arhitektura
Klijent-server arhitektura je model komunikacije između dva entiteta: klijenta i servera. U ovom
modelu, klijent (koji je obično veb pretraživač ili mobilna aplikacija) šalje zahteve serveru, a
server obrađuje te zahteve i vraća odgovore.

U kontekstu REST API-ja, ovaj model se koristi za razmenu podataka između klijenta i
servera. Klijent može da bude frontend aplikacija (npr. napisano u Vue.js ili React), dok server
(backend) može biti implementiran u nekom jeziku kao što je .NET Core (C#), Flask (Python),
Laravel (PHP), itd…

• Frontend: Deo aplikacije koji je vidljiv korisnicima i koji oni koriste direktno.
Frontend se obično razvija koristeći HTML, CSS, i JavaScript okvire kao što su
Vue.js ili React. Frontend šalje zahteve ka API-ju kako bi dobio ili poslao podatke
sa servera.

• Backend: Deo aplikacije koji se izvršava na serveru, I koji upravlja obradom
podataka, autentifikacijom, validacijom i komunikacijom sa bazom podataka.
Backend je zadužen za primanje zahteva od klijenta (preko API-ja), obradu tih
zahteva i slanje odgovarajućih podataka nazad na frontend.

3.1 Pojam API-ja
API je interfejs koji omogućava različitim aplikacijama da komuniciraju međusobno. REST API
je specifičan stil arhitekture za izgradnju API-ja, gde se komunicira putem HTTP metoda (GET,
POST, PUT, DELETE). API omogućava klijentu da vrši različite akcije kao što su dobijanje
podataka sa servera, slanje novih podataka, ažuriranje ili brisanje postojećih podataka.

Proces dobijanja podataka sa servera:

1. Zahtev od klijenta: Kada korisnik pokrene neku akciju na frontend aplikaciji (npr. klikne
na dugme da vidi listu proizvoda), frontend šalje HTTP zahtev ka REST API-ju na
serveru.

2. Obrada zahteva na serveru: Server prima zahtev i na osnovu rute i metode (GET,
POST, itd.) obrađuje taj zahtev. Na primer, ako klijent zahteva listu proizvoda, server
će poslati upit ka bazi podataka, dobiti tražene podatke i pripremiti ih u JSON formatu.

3. Odgovor sa servera: Nakon obrade zahteva, server vraća HTTP odgovor klijentu koji
sadrži tražene podatke u formatu koji frontend može da interpretira (najčešće JSON).

4. Prikaz na frontendu: Frontend zatim koristi dobijene podatke da ih prikaže korisniku
(npr. renderuje listu proizvoda na stranici).

Primer:

1. Klijent: Korisnik klikne na dugme da vidi sve proizvode u aplikaciji.
2. HTTP zahtev: Frontend (npr. Vue.js aplikacija) šalje HTTP GET zahtev ka ruti API-ja,

npr. /products.
3. Server: Backend (npr. Flask API) prima zahtev na ruti /products, preuzima podatke iz

baze i vraća ih u JSON (engl. JavaScript Object Notation) formatu.
4. HTTP odgovor: Server vraća odgovor koji sadrži JSON listu svih proizvoda.
5. Prikaz na frontendu: Frontend prima odgovor i prikazuje listu proizvoda korisniku.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

15

Jednostavna Flask ruta koja vraća listu proizvoda
from flask import Flask, jsonify

app = Flask(__name__)

Simulirani podaci
products = [
 {"id": 1, "name": "Proizvod 1", "price": 100},
 {"id": 2, "name": "Proizvod 2", "price": 200},
]

Ruta za vraćanje liste proizvoda
@app.route('/products', methods=['GET'])
def get_products():
 # jsonify funkcija koja konvertuje izlaz u JSON response objekat

return jsonify(products)

if __name__ == '__main__':

app.run(debug=True)
app.py

/* Frontend kod u Vue.js-u koji koristi Axios za slanje GET zahteva Flask

API-ju i prikazivanje podataka */
<script setup>
import { ref, onMounted } from 'vue';
import axios from 'axios';
import { toast } from 'vue3-toastify';

const products = ref([]); /* Ref (reaktivna promenljiva) za čuvanje liste
proizvoda */

const fetchProducts = async () => {
 try {
 // Poziv Flask API-ja
 const response = await axios.get('http://localhost:5000/products');
 products.value = response.data; // Čuvanje podataka u products ref
 } catch (error) {
 toast.error('Greška pri preuzimanju proizvoda: ' + error.message);
 }
};

onMounted(() => {
/* Poziv API-ja kada se komponenta mount-uje
 (Dodavanje HTML elemenata koji odgovaraju ovoj komponenti u DOM) */
 fetchProducts();
});
</script>

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

16

<template>
 <div>
 <h1>Lista proizvoda</h1>

 <li v-for="product in products" :key="product.id">
 {{ product.name }} - Cena: {{ product.price }} RSD

 </div>
</template>

<style>
/* Stilovi po želji */
</style>

ProductsPrimer.vue

/* Registrovanje /products rute kako bi se na njoj u veb pregledaču učitala
ProductsPrimer.vue komponeta */
import { createRouter, createWebHistory } from "vue-router";
import ProductsPrimer from "@/views/ProductsPrimer.vue";

const routes = [
 {
 path: "/products",
 name: "Products",
 component: ProductsPrimer,
 },
];

const router = createRouter({
 history: createWebHistory(import.meta.env.BASE_URL),
 routes,
});

export default router;

router/index.js

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

17

Pojašnjenje:

• Axios GET zahtev: Kada se komponenta mount-uje (tj. kada se učita), Vue.js šalje
GET zahtev ka ruti /products Flask API-ja koristeći axios.get. U ovom slučaju,
URL je “http://localhost:5000/products”, jer server radi lokalno.

• Odgovor API-ja: Ako je zahtev uspešan, odgovor (response.data) sadrži listu
proizvoda u JSON formatu, koji se zatim čuva u products reaktivnoj promenljivoj
u Vue.js komponenti.

• Renderovanje podataka: U template delu, Vue koristi v-for direktivu da iterira
kroz listu products i prikaže svaki proizvod u elementu sa informacijama o
imenu i ceni.

• Na slici 3.1 prikazana je stranica u veb pregledaču nakon što se pristupi ruti
/products, odnosno “http://localhost:5173/products”

Sl. 3.1 Pristupanje /products ruti koja render-uje ProductsPrimer.vue

3.2 Pojam Autentifikacije
Autentifikacija je proces kojim se proverava identitet korisnika ili sistema koji pokušava da
pristupi određenom resursu. U suštini, autentifikacija odgovara na pitanje: "Ko si ti?" Na
primer, kada korisnik unosi korisničko ime i lozinku na login formi, API ili server proverava da
li su te informacije tačne i na osnovu toga dozvoljava ili odbija pristup.

3.2.1 Autentifikacija kolačićima (engl. Cookie authentication)
Cookie autentifikacija je tradicionalna metoda autentifikacije gde, nakon uspešne prijave
korisnika, server kreira sesiju (engl.session) i povezuje je sa korisnikom. Server zatim šalje
cookie nazad klijentu (obično veb pregledaču), koji čuva cookie i koristi ga u svim narednim
zahtevima prema serveru.

Na slici 3.2 prikazano je funkcionisanje cookie autentifikacije:

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

18

1. Prijava korisnika: Korisnik unosi svoje kredencijale (korisničko ime i lozinku).
2. Validacija na serveru: Server proverava da li su kredencijali ispravni.
3. Kreiranje sesije: Ako su kredencijali ispravni, server kreira sesiju na serveru i povezuje

je sa korisnikom.
4. Povezivanje sesije i cookie-a: Server stavlja sessionID u cookie-ju.
5. Slanje cookie-a: Server šalje klijentu cookie koji sadrži ID sesije.
6. Svaki naredni zahtev: Klijent automatski šalje cookie sa ID-jem sesije u zaglavlju

svakog narednog zahteva. Server preko ID-ja pronalazi sesiju i identifikuje korisnika.

Sl. 3.2 Funkcionisanje cookie autentifikacije

Problem sa cookie autentifikacijom:
1. Pamćenje stanja (engl. stateful): Server mora da pamti sve aktivne sesije, što znači da

mora da skladišti informacije o prijavljenim korisnicima. Ovo može postati
problematično u distribuiranim sistemima ili kada postoji više servera.

2. Pitanja skalabilnosti: Kako bi sistem bio skalabilan, sesije se često moraju skladištiti u
zajedničkoj bazi podataka ili memori, što povećava složenost.

3.2.2 JWT Autentifikacija (engl. JSON Web Token authentication)
JWT autentifikacija koristi metodu autentifikacije bez pamćenja stanja (engl. stateless).
Umesto da se server oslanja na sesije, JWT koristi token koji se generiše na serveru i šalje
klijentu nakon prijave. Klijent zatim šalje ovaj token u svakom narednom zahtevu, a server
koristi token za verifikaciju korisnika.

Token je mali digitalni token (u ovom slučaju JWT) koji sadrži korisničke podatke i koristi se
za autentifikaciju. Token je obično šifrovan i potpisan, što znači da je siguran od izmena.

Slika 3.3 prikazuje komponente JWT tokena:

1. Header (zaglavlje): Sadrži tip tokena i algoritam za potpisivanje (npr. HS256).
2. Payload (telo): Sadrži korisničke podatke, kao što su korisnički ID, uloga, i druge

informacije koje server može koristiti.
3. Signature (potpis): Obezbeđuje integritet tokena i koristi se da se osigura da token nije

izmenjen nakon što je izdat.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

19

Sl. 3.3 Komponente JWT tokena

Slika 3.4 prikazuje funkcionisanje JWT autentifikacije:

1. Prijava korisnika: Korisnik unosi svoje kredencijale.
2. Generisanje tokena: Server proverava kredencijale, i ako su tačni, kreira JWT token

koji sadrži informacije o korisniku (kao što su korisnički ID, uloga, i sl.). Ovaj token je
šifrovan i potpisan.

3. Slanje tokena: JWT token se šalje klijentu.
4. Svaki naredni zahtev: Klijent u svakom narednom zahtevu šalje JWT token u

Authorization zaglavlju (obično sa "Bearer" prefiksom).
5. Verifikacija na serveru: Server dešifrje token, proverava njegov integritet (da li je

validan I neizmenjen), I koristi podatke iz tokena da identifikuje korisnika I proveri
njegova prava pristupa.

Sl. 3.4 Funkcionisanje JWT autentifikacije

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

20

Prednosti korišćenja tokena:
1. Stateless (bez potrebe za skladištenjem sesija): Server ne mora da čuva informacije o

prijavljenim korisnicima jer se svi potrebni podaci nalaze unutar tokena. Ovo olakšava
skalabilnost i smanjuje opterećenje servera.

2. Lakša skalabilnost: Sa JWT, serveri ne moraju da dele informacije o sesijama između
sebe, što omogućava lakše skaliranje aplikacije (npr. distribuciju opterećenja na više
servera).

3. Bezbednost: JWT tokeni su šifrovani i potpisani, što znači da su podaci unutar njih
bezbedni. Takođe, server može lako da proveri da li je token izmenjen.

4. Jednostavna autentifikacija u mikroservisima: JWT tokeni omogućavaju jednostavnu
autentifikaciju u sistemima sa više mikroservisa jer svaki servis može da proveri token
bez potrebe za pristupom centralnoj sesiji.

5. Fleksibilnost: Tokeni mogu sadržati dodatne informacije o korisniku (npr. prava
pristupa), čime se omogućava lakša autorizacija bez potrebe za dodatnim upitima ka
bazi podataka.

3.3. Pojam autorizacije

Autorizacija je bezbednosni proces koji određuje koja prava i privilegije ima autentifikovani
korisnik u okviru sistema. Za razliku od autentifikacije, koja proverava identitet korisnika,
autorizacija odgovara na pitanje šta korisnik sme da radi. Ona definiše kojim resursima
korisnik može da pristupi i koje operacije može da izvrši, kao što su čitanje, izmena ili brisanje
podataka.
Role (uloge) predstavljaju strukturisan i sistematičan način upravljanja pristupom u sistemima.
Svaka rola obuhvata unapred definisan skup dozvola, pravila i odgovornosti koji određuju koje
funkcionalnosti i resurse korisnik može da koristi. Umesto individualnog dodeljivanja prava
svakom korisniku, korisnici se povezuju sa odgovarajućim rolama, čime se postiže bolja
preglednost i lakše održavanje sistema. Ovakav pristup omogućava jasnu podelu nadležnosti
između različitih tipova korisnika, kao što su administratori, moderatori i standardni korisnici,
smanjuje rizik od grešaka u dodeli privilegija i doprinosi višem nivou bezbednosti i kontrole u
savremenim softverskim i distribuiranim okruženjima.

U nastavku je jedan jednostavni primer koji se najčešće koristi u praksi:
U aplikaciji za upravljanje dokumentima postoje dve role: Administrator i Korisnik.
Administrator ima puna prava nad sistemom, što uključuje dodavanje i brisanje korisnika,
dodeljivanje rola, kao i kreiranje, izmenu i brisanje svih dokumenata. Korisnik ima ograničena
prava i može da pregleda dokumente kojima ima pristup, kao i da kreira i menja isključivo
sopstvene dokumente, ali nema mogućnost upravljanja drugim korisnicima niti sistemskim
podešavanjima.
U ovom slučaju, nakon uspešne autentifikacije, sistem proverava da li je korisnik Administrator
ili Korisnik i na osnovu te role omogućava ili ograničava pristup određenim funkcionalnostima.
Ovakva podela rola omogućava jasnu kontrolu pristupa, jednostavnije održavanje sistema i
smanjenje bezbednosnih rizika.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

21

4. Izrada aplikacije

4.1 Izgled aplikacije, stranice i rute
Na slikama 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 I 4.11 nalaze se stranice koje čine
kompletnu aplikaciju.

Sl. 4.1 Login

Sl. 4.2 Studenti

Sl. 4.3 Student

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

22

Sl. 4.4 Izmena studenta

Sl. 4.5 Dodavanje novog studenta

Sl. 4.6 Predmeti

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

23

Sl. 4.7 Izmena predmeta

Sl. 4.8 Dodavanje novog predmeta

Sl. 4.9 Korisnici

Sl. 4.10 Modal za brisanje entiteta

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

24

Sl. 4.11 Izmena korisnika

Sl. 4.12 Dodavanje novog korisnika

4.2 Razdvajanje u komponente
Na gorenavedenim slikama moguće je primetiti neka ponavljanja I sličnosti na svim
stranicama. Konkretno, navigacioni meni se javlja na svakoj stranici, osim na login-u. Takođe,
forme za izmenu I dodavanje novih entiteta (studenata, predmeta I korisnika) imaju isti stil I
izgled, a isto važi I za prikazivanje entiteta (studenata, predmeta I korisnika) u tabele. Što se
tiče brisanja entiteta, za svaki iskače isti modal za potvrdu brisanja prikazan na slici 4.10.

1. Imajući ovo u vidu, poželjno je kreirati reusable komponente (components), koje će se
koristiti na stranicama, tj. u pogledima (views) po potrebi, a to bi bile:

2. Navbar.vue – navigacioni meni
3. FormContainer.vue - <div> element, kontejner sa određenim stilovima za forme
4. TableContainer.vue - <div> element, kontejner sa određenim stilovima za tabele
5. DeleteModal.vue – potvrdni modal koji će iskakati kada se pokrene akcija brisanja

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

25

5. Kreiranje komponenti i stranice za login

5.1 views/Login.vue
Potrebno je u folder views kreirati novi fajl I nazvati ga Login.vue. Predstavljaće login
stranicu.

<script setup>
import { ref } from "vue";
import axios from "axios";
import { useRouter } from "vue-router";
import { toast } from "vue3-toastify";

const email = ref("");
const lozinka = ref("");
const router = useRouter();

const handleSubmit = async (event) => {
 event.preventDefault();
 try {
 const response = await axios.post("/api/login", {
 email: email.value,
 lozinka: lozinka.value,
 });

 localStorage.setItem("access_token", response.data.access_token);
 localStorage.setItem("rola", response.data.rola);

 router.push("/studenti").then(() =>
toast.success(response.data.message));
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }
};
</script>

<template>
 <div class="container">
 <div class="row justify-content-center my-5">

 </div>
 <div class="row justify-content-center">
 <div class="col-lg-6 col-xs-12">
 <form @submit="handleSubmit">
 <div class="form-group mb-3">
 <label>Email adresa</label>
 <input type="email" v-model="email" class="form-control" required
/>

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

26

 </div>
 <div class="form-group mb-3">
 <label>Lozinka</label>
 <input
 type="password"
 v-model="lozinka"
 class="form-control"
 required
 />
 </div>
 <input
 type="submit"
 class="btn btn-primary"
 role="button"
 value="Prijavi se"
 />
 </form>
 </div>
 </div>
 </div>
</template>

<style scoped>
.logo {
 width: 20rem;
 height: auto;
}
</style>

Login.vue izvorni kod

1. Script setup

<script setup>

Ovo je specijalan način za pisanje JavaScript-a u Vue 3. Sve što se napiše unutar <script
setup> direktno je dostupno u Vue.js komponenti. Ovo pojednostavljuje kod i omogućava
korišćenje promenljiva i funkcija bez dodatnih deklaracija.

2. Importovanje

import { ref } from "vue";
import axios from "axios";
import { useRouter } from "vue-router";

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

27

import { toast } from "vue3-toastify";

Vue omogućava modularnost, pa je moguće uvoziti delove koda iz drugih fajlova. U ovom
slučaju:

• ref je funkcija iz Vue.js koja omogućava kreiranje reaktivnih promenljiva. Reaktivne
promenljive u Vue.js automatski ažuriraju prikaz kada se promene

• useRouter omogućava navigaciju između stranica unutar aplikacije.
• toast dolazi iz vue3-toastify i koristi se za prikazivanje malih obaveštenja (npr.

poruke o uspešnoj odjavi).
• Axios je komponenta koja se koristi za slanje HTTP zahteva (u ovom slučaju potrebno

je poslati POST zahtev za login)

3. Promenljive

const email = ref("");
const lozinka = ref("");
const router = useRouter();

• ref: funkcija iz Vue.js koja omogućava kreiranje reaktivnih promenljiva. Reaktivne
promenljive (u ovom slučaju email I lozinka) u Vue.js automatski ažuriraju prikaz
kada se promene. Primer, promenljiva email je definisana pomoću ref(“”), što znači
da je inicijalno postavljena na prazan string, a kasnije može biti ažurirana. Kada se
vrednost email promeni, sve komponente koje zavise od ove vrednosti će automatski
biti osvežene.

• router: instanca router-a koja se koristi za navigaciju.

4. handleSubmit funkcija

 const handleSubmit = async (event) => {
 event.preventDefault();
 try {
 const response = await axios.post("/api/login", {
 email: email.value,
 lozinka: lozinka.value,
 });

 localStorage.setItem("access_token", response.data.access_token);
 localStorage.setItem("rola", response.data.rola);

 router.push("/studenti").then(() =>
toast.success(response.data.message));
 } catch (error) {
 toast.error(error.response.data.message || error.message);

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

28

 }
};

• handleSubmit je funkcija koja se poziva kada se forma podnese:

 <form @submit="handleSubmit">

• event.preventDefault() sprečava podrazumevano ponašanje forme (npr.
osvežavanje stranice).

• axios.post šalje POST zahtev na /api/login sa email i lozinka vrednostima.
• Ako je zahtev uspešan:

o localStorage.setItem čuva access_token i rola u localStorage.
o router.push preusmerava korisnika na /studenti rutu i prikazuje uspešnu

notifikaciju.
• Ako dođe do greške, prikazuje grešku koristeći toast.

5. Slika logotipa

Potrebno je u src/assets/img folder ubaciti sliku pod nazivom logo.png, a ovaj isečak koda
omogućava prikazivanje slike na vrhu forme. Slika je stilizovana klasom .logo u <style>
komponenti:

<style scoped>
.logo {
 width: 20rem;
 height: auto;
}
</style>

6. Input polja

<input type="email" v-model="email" class="form-control" required />

<input type="password" v-model="lozinka" class="form-control" required/>

v-model direktiva omogućava tzv. dvostruko vezivanje (engl. Two-way binding). Dvostruko
vezivanje znači da promena vrednosti u input polju automatski ažurira povezanu
promenljivu, i obrnuto, promena vrednosti promenljive automatski ažurira vrednost u input
polju.
Način rada na konkretnom primeru:

• Deklaracija reaktivnih promenljivih:

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

29

o U JavaScript delu komponente, odnosno <script setup> deklarisane su dve
reaktivne promenljive (email I lozinka) koristeći ref:

const email = ref("");
const lozinka = ref("");

o email: Čuva vrednost unetu u polje za email.
o lozinka: Čuva vrednost unetu u polje za lozinku.

• Vezivanje input polja za promenljive
o U HTML delu komponente, koristi se v-model direktiva radi vezivanje input

polja za ove promenljive. V-model=”email” vezuje vrednost input polja za
promenljivu email, dok v-model=”lozinka” vezuje vrednost input polja za
promenljivu lozinka.

• Primer: ako korisnik unese “user@example.com” u input polje za email:

<input type="email" v-model="email" class="form-control" required />

o Promenljiva email.value postaje "user@example.com"
o Ako se kasnije u kodu promeni email.value na "newuser@example.com",

input polje će automatski prikazati "newuser@example.com".
o Ovo olakšava rad sa formama i osigurava da su podaci uvek sinhronizovani

između korisničkog interfejsa i logike aplikacije.

7. Registrovanje /login rute

Potrebno je u fajlu router/index.js registrovati rutu za login. Kada se pristupi URL-u:
http://localhost:5173/login, učitaće se gorenavedena Login.vue komponenta.

import { createRouter, createWebHistory } from "vue-router";
import Login from "@/views/Login.vue";

const routes = [
 {
 path: "/login",
 name: "Login",
 component: Login,
 },
];

const router = createRouter({
 history: createWebHistory(import.meta.env.BASE_URL),
 routes,
});

export default router;

http://localhost:5173/login

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

30

router/index.js izvorni kod

8. Zahtevanje prijave (login) u aplikaciju na svakih 30 minuta

Potrebno je u fajlu main.js dodati funkciju setInterval koja će brisati ceo sadržaj, odnosno
podatke o roli I tokenu iz localStorage na svakih 30 minuta. Ova funkcija, radi sigurnosti I
bezbenosti, obezbeđuje da korisnik mora da se prijavi (login) na svakih pola sata.

import { createApp } from "vue";
import App from "./App.vue";
import Vue3Toastify from "vue3-toastify";
import "vue3-toastify/dist/index.css";
import router from "./router";
import axios from "axios";

setInterval(() => {
 localStorage.clear();
}, 30 * 60 * 1000);

const app = createApp(App);

app.use(Vue3Toastify, {
 autoClose: 3000,
});

app.use(router);

app.mount("#app");

main.js izvorni kod

9. Slanje JWT tokena uz svaki HTTP zahtev

Potrebno je u fajlu main.js dodati kod za konfiguraciju Axios-a. Dodata funkcija koristi Axios
interceptore za dodavanje Authorization zaglavlja sa JWT tokenom u svaki HTTP zahtev koji
se šalje sa klijenta.

import { createApp } from "vue";
import App from "./App.vue";
import Vue3Toastify from "vue3-toastify";
import "vue3-toastify/dist/index.css";
import router from "./router";
import axios from "axios";

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

31

setInterval(() => {
 localStorage.clear();
}, 30 * 60 * 1000);

axios.interceptors.request.use(
 (config) => {
 const token = localStorage.getItem("access_token");
 if (token) {
 config.headers.Authorization = `Bearer ${token}`;
 }
 return config;
 },
 (error) => {
 return Promise.reject(error);
 }
);

const app = createApp(App);

app.use(Vue3Toastify, {
 autoClose: 3000,
});

app.use(router);

app.mount("#app");

main.js izvorni kod

5.2 components/Navbar.vue
Potrebno je u folder components kreirati novi fajl I nazvati ga Navbar.vue.

<script setup>
import { RouterLink, useRoute } from "vue-router";
import { useRouter } from "vue-router";
import { useUserRole } from "@/composables/useUserRole.js";
import { toast } from "vue3-toastify";
import axios from "axios";
import { onMounted } from "vue";

const router = useRouter();
const { userRole, checkUserRole } = useUserRole();

const isActiveLink = (routePath) => {
 const route = useRoute();

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

32

 return route.path === routePath;
};

onMounted(() => {
 checkUserRole();
});

const handleLogout = async () => {
 try {
 localStorage.removeItem("access_token");
 router.push("/login").then(() => toast.success("Uspešno ste se
odjavili."));
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }
};
</script>

<template>
 <nav class="navbar navbar-expand-lg navbar-dark bg-primary">
 <div class="container-fluid">
 <RouterLink class="navbar-brand" to="/studenti"
 >Studentska evidencija</RouterLink
 >
 <button
 class="navbar-toggler"
 type="button"
 data-bs-toggle="collapse"
 data-bs-target="#navbarSupportedContent"
 aria-controls="navbarSupportedContent"
 aria-expanded="false"
 aria-label="Toggle navigation"
 >

 </button>
 <div class="collapse navbar-collapse" id="navbarSupportedContent">
 <ul class="navbar-nav me-auto mb-2 mb-lg-0">
 <li :class="{ 'nav-item': true, active: isActiveLink('/studenti')
}">
 <RouterLink class="nav-link"
to="/studenti">Studenti</RouterLink>

 <li
 v-if="userRole === 'administrator'"
 :class="{ 'nav-item': true, active: isActiveLink('/predmeti')
}"
 >

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

33

 <RouterLink class="nav-link"
to="/predmeti">Predmeti</RouterLink>

 <li
 v-if="userRole === 'administrator'"
 :class="{ 'nav-item': true, active: isActiveLink('/korisnici')
}"
 >
 <RouterLink class="nav-link"
to="/korisnici">Korisnici</RouterLink>

 <form class="d-flex" @submit.prevent="handleLogout">
 <button type="submit" class="btn btn-primary">
 <i class="fas fa-sign-out-alt"></i>
 </button>
 </form>
 </div>
 </div>
 </nav>
</template>

Navbar.vue izvorni kod

1. Importovanje

import { RouterLink, useRoute } from "vue-router";
import { useRouter } from "vue-router";
import { useUserRole } from "@/composables/useUserRole.js";
import { toast } from "vue3-toastify";
import { onMounted } from "vue";

Vue omogućava modularnost, pa je moguće uvoziti delove koda iz drugih fajlova. U ovom
slučaju:

• RouterLink i useRoute dolaze iz vue-router, a to je alat koji pomaže pri kreiranju
ruta (putanja) unutar aplikacije.

• useRouter omogućava navigaciju između stranica unutar aplikacije.
• useUserRole je funkcija napisana u posebnom fajlu i koristi se da proveri koja je uloga

(role) korisnika.
• toast dolazi iz vue3-toastify i koristi se za prikazivanje malih obaveštenja (npr.

poruke o uspešnoj odjavi).
• onMounted je specijalna funkcija iz Vue.js-a koja omogućava da izvršimo kod čim se

komponenta prikaže na ekranu.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

34

2. useUserRole composable funkcija

Potrebno je kreirati folder composables unutar src foldera, a zatim u njemu kreirati fajl
useUserRoute.js:

import { ref } from "vue";

export function useUserRole() {
 const userRole = ref(null);

 const checkUserRole = () => {
 const role = localStorage.getItem("rola");
 userRole.value = role;
 };

 return {
 userRole,
 checkUserRole,
 };
}

Ovaj kod je jednostavna Vue.js kompozibilna funkcija koja služi za rad sa korisničkom rolom,
koristeći ref i funkciju za proveru role sačuvane u localStorage:

• ref: funkcija iz Vue.js koja omogućava kreiranje reaktivnih promenljiva. Reaktivne
promenljive u Vue.js automatski ažuriraju prikaz kada se promene. U ovom slučaju,
promenljiva userRole je definisana pomoću ref(null), što znači da je inicijalno
postavljena na null, a kasnije može biti ažurirana. Kada se vrednost userRole
promeni, sve komponente koje zavise od ove vrednosti će automatski biti osvežene.

• checkUserRole: funkcija koja služi za proveru korisničke role. Unutar nje se koristi
localStorage.getItem("rola") kako bi se dobila vrednost sačuvana pod ključem
"rola" u lokalnoj memoriji pregledača. Kada se ova vrednost preuzme, dodeljuje se
reaktivnoj promenljivoj userRole putem userRole.value = role. Na taj način se
reaktivna vrednost ažurira.

• export function useUserRole(): omogućavanje korišćenje ove funkcije u drugim
delovima aplikacije. Kada se funkcija useUserRole izveze, ona može biti uvezena i
korišćena u različitim komponentama, konkretno ovde u Navbar.vue

• return: u Vue.js kompozibilnim funkcijama, return vraća objekte ili funkcije koje su
dostupne komponentama koje koriste ovu kompozibilnu funkciju. U ovom slučaju,
vraćaju se userRole i checkUserRole, omogućavajući komponentama pristup
reaktivnoj promenljivoj userRole i funkciji checkUserRole.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

35

3. onMounted funkcija

onMounted(() => {
 checkUserRole();
});

onMounted funkcija se koristi da izvrši određeni kod kada se komponenta učita. U ovom
slučaju, kad se stranica učita, poziva se funkcija checkUserRole koja proverava koju ulogu
ima korisnik (administrator ili profesor).

4. Logika za proveru aktivnog linka

const isActiveLink = (routePath) => {
 const route = useRoute();
 return route.path === routePath;
};

Funkcija isActiveLink proverava da li je trenutni link na kojem se korisnik nalazi aktivan. Na
primer, ako je korisnik na stranici "Studenti", ova funkcija će vratiti true za tu putanju, a false
za sve ostale. Na ovaj način može se stilizovati aktivni link da se ističe u meniju:

<li :class="{ 'nav-item': true, active: isActiveLink('/studenti') }">

<RouterLink class="nav-link" to="/studenti">Studenti</RouterLink>

Direktiva :class u Vue.js omogućava dinamičko dodavanje klasa HTML elementima. U ovom
primeru, koristi se za dodavanje klasa nav-item i active elementu na osnovu
određenih uslova.

• 'nav-item': true: Ovo znači da će klasa nav-item uvek biti dodata
elementu .

• active: isActiveLink('/studenti'): Ovo znači da će klasa active biti dodata
elementu samo ako funkcija isActiveLink('/studenti') vrati true.

5. Odjava korisnika

const handleLogout = async () => {
 try {
 localStorage.removeItem("access_token");
 router.push("/login").then(() => toast.success("Uspešno ste se
odjavili."));
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

36

};

Ova funkcija se koristi za odjavu korisnika. Kada korisnik klikne na dugme za odjavu, funkcija
briše njegov token za pristup iz lokalne memorije i preusmerava ga na stranicu za prijavu.
Takođe, prikazuje se obaveštenje da je korisnik uspešno odjavljen. Ovako izgleda dugme za
odjavu:

 <form class="d-flex" @submit.prevent="handleLogout">
 <button type="submit" class="btn btn-primary">
 <i class="fas fa-sign-out-alt"></i>
 </button>
 </form>

@submit.prevent je direktiva koja sprečava podrazumevano ponašanje forme (npr.
osvežavanje stranice) i izvršava navedenu funkciju.

6. Rutiranje (navigacija između stranica)

<RouterLink class="nav-link" to="/studenti">Studenti</RouterLink>

RouterLink je specijalan element iz vue-router paketa koji omogućava kreiranje linkova
između različitih stranica u aplikaciji. U ovom primeru, klikom na "Studenti", korisnik se
prebacuje na stranicu sa spiskom studenata.

7. v-if direktiva

<li v-if="userRole === 'administrator'">

v-if je Vue direktiva koja omogućava prikazivanje ili sakrivanje određenih elemenata na
osnovu uslova. U ovom slučaju, proverava se da li je korisnik administrator. Ako jeste,
prikazuju se određeni linkovi kao što su "Predmeti" i "Korisnici". Ako nije, ti linkovi neće biti
prikazani.

8. Prikazivanje Navbar.vue na svim stranicama osim na Login

Potrebno je izmeniti App.vue tako da se primeni logika za prikazivanje ili sakrivanje
navigacionog menija Navbar.vue na osnovu trenutne rute.

<script setup>
import { RouterLink, RouterView } from "vue-router";
import Navbar from "./components/Navbar.vue";

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

37

</script>

<template>
 <div>
 <Navbar v-if="$route.name !== 'Login'"></Navbar>
 <RouterView></RouterView>
 </div>
</template>

<style>
/* Stilovi za aplikaciju */
</style>

App.vue izvorni kod

• <Navbar v-if=“$route.name !== ‘Login’”>: Ova linija koristi Vue direktivu v-
if da uslovno prikaže komponentu Navbar.vue samo ako trenutna ruta nije Login.
$route.name je svojstvo koje vraća ime trenutne rute.

• RouterView je komponenta koja prikazuje odgovarajuću komponentu za trenutnu
rutu.

5.3 components/TableContainer.vue
Potrebno je u folder components kreirati novi fajl I nazvati ga TableContainer.vue. Ova
komponenta služi da se isti stil primeni za svako prikazivanje entiteta (studenata, predmeta I
korisnika) u tabele. Osim primene istog stila, ovim se izbegava ponavljanje pisanja dugmeta
koje vodi do stranice kreiranja entiteta.

<script setup>
import { defineProps } from "vue";
import { RouterLink } from "vue-router";

const props = defineProps({
 to: {
 type: String,
 required: true,
 },
 buttonText: {
 type: String,
 required: true,
 },
});
</script>

<template>
 <div class="container">

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

38

 <div class="row">
 <div class="my-5 justify-content-end">
 <RouterLink :to="to" role="button" class="btn btn-primary">
 {{ buttonText }}
 </RouterLink>
 </div>
 <div class="row">
 <table class="table">
 <thead class="thead-dark">
 <slot name="table-header"></slot>
 </thead>
 <tbody>
 <slot name="table-body"></slot>
 </tbody>
 </table>
 </div>
 </div>
 </div>
</template>

TableContainer.vue izvorni kod

1. Importovanje

import { defineProps } from "vue";
import { RouterLink } from "vue-router";

• defineProps je funkcija iz Vue.js koja omogućava definisanje svojstava (props) koje
komponenta može primiti. Ovo omogućava komponenti da bude fleksibilna i ponovo
upotrebljiva.

• RouterLink je komponenta iz vue-router paketa koja omogućava navigaciju između
različitih ruta unutar aplikacije. Koristi se za kreiranje linkova koji vode do drugih
stranica.

2. Vue.js defineProps

const props = defineProps({
 to: {
 type: String,
 required: true,
 },
 buttonText: {
 type: String,
 required: true,

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

39

 },
});

• props: Objekat koji definiše svojstva koja komponenta može primiti. U ovom slučaju,
komponenta očekuje dva svojstva:

o to: String koji predstavlja putanju do koje RouterLink vodi. Ovo svojstvo je
obavezno.

o buttonText: String koji predstavlja tekst koji će biti prikazan na dugmetu. Ovo
svojstvo je takođe obavezno.

<RouterLink :to="to" role="button" class="btn btn-primary">
 {{ buttonText }}
</RouterLink>

U gorenavedenom kodu nalazi se primena props svojstava:
• <RouterLink>: Ovo je komponenta iz vue-router paketa koja omogućava navigaciju

između različitih ruta unutar Vue.js aplikacije. Koristi se za kreiranje linkova koji vode
do drugih stranica.

• :to=“to”: Direktiva :to (bind) koristi vrednost to iz props objekta. Ovo svojstvo
definiše putanju do koje će link voditi. Na primer, ako je to="/studenti", klikom na
link korisnik će biti preusmeren na stranicu sa putanjom /studenti.

• role=“button”: HTML atribut role postavlja ulogu elementa. U ovom
slučaju, role="button" označava da se ovaj link ponaša kao dugme, što može biti
korisno za pristupačnost (accessibility).

• class=“btn btn-primary”: Atribut class dodaje CSS klase elementu. U ovom
slučaju, koristi se Bootstrap klasa btn btn-primary koja stilizuje link kao primarno
dugme.

• {{ buttonText }}: Unutar dvostrukih vitičastih zagrada nalazi se buttonText, što
je vrednost iz props objekta. Ovo svojstvo definiše tekst koji će biti prikazan na
dugmetu. Na primer, ako je buttonText="Dodaj studenta", tekst na dugmetu će
biti “Dodaj studenta”.

3. Slotovi

<table class="table">
 <thead class="thead-dark">
 <slot name="table-header"></slot>
 </thead>
 <tbody>
 <slot name="table-body"></slot>
 </tbody>
</table>

• <thead class=“thead-dark”>: Ovo je deo tabele koji predstavlja zaglavlje tabele.
Klasa thead-dark koristi Bootstrap stilove za tamno zaglavlje.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

40

• <slot name=“table-header”></slot>: Slot sa imenom table-header. Slotovi su mesta
u komponenti gde se može umetnuti sadržaj iz roditeljske komponente. U ovom
slučaju, sadržaj koji se umetne u slot sa imenom table-header će biti prikazan
unutar <thead> elementa.

• <tbody>: Ovo je deo tabele koji predstavlja telo tabele.
• <slot name=“table-body”></slot>: Slot sa imenom table-body. Sadržaj umetnut u

slot sa imenom table-body će biti prikazan unutar <tbody> elementa.

Slotovi: Slotovi omogućavaju umetanje dinamičkog sadržaja u komponentu. U ovom slučaju,
slotovi table-header i table-body omogućavaju umetanje prilagođenog zaglavlja i tela tabele
iz roditeljske komponente:

• <slot name=“table-header”></slot>: Ovaj slot omogućava umetanje prilagođenog
sadržaja u zaglavlje tabele. Na primer, roditeljska komponenta može umetnuti kolone
zaglavlja tabele.

• <slot name=“table-body”></slot>: Ovaj slot omogućava umetanje prilagođenog
sadržaja u telo tabele. Na primer, roditeljska komponenta može umetnuti redove sa
podacima.

Primer umetanja sadržaja pomoću slotova:

<template>
 <TableContainer to="/korisnik-novi" buttonText="Dodaj korisnika">
 <template #table-header> //umetanje u slot
 <tr>
 <th scope="col">Ime</th>
 <th scope="col">Prezime</th>
 <th scope="col">Email</th>
 <th scope="col">Rola</th>
 </tr>
 </template>
 <template #table-body> //umetanje u slot
 <tr v-for="korisnik in korisnici" :key="korisnik.id">
 <td>{{ korisnik.ime }}</td>
 <td>{{ korisnik.prezime }}</td>
 <td>{{ korisnik.email }}</td>
 <td>{{ korisnik.rola }}</td>
 </tr>
 </template>
 </TableContainer>
</template>

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

41

5.4 components/FormContainer.vue
Potrebno je u folder components kreirati novi fajl I nazvati ga FormContainer.vue. Ova
komponenta služi da se isti stil primeni za svaku formu prilikom kreiranja I izmene entiteta
(studenata, predmeta I korisnika).

<script setup>
import { defineProps } from "vue";

const props = defineProps({
 title: {
 type: String,
 required: true,
 },
});
</script>

<template>
 <div class="container">
 <div class="row">
 <div class="col-lg-6 col-12">
 <div class="my-5">
 <h3>{{ title }}</h3>
 </div>
 <slot></slot>
 </div>
 </div>
 </div>
</template>

TableContainer.vue izvorni kod

5.5 components/DeleteModal.vue
Potrebno je u folder components kreirati novi fajl I nazvati ga DeleteModal.vue. Ovaj modal
će se prikazazi svaki put kada korisnik želi da izvrši akciju brisanja entiteta.

<script setup>
<script setup>
import { ref, defineExpose, onMounted, onBeforeUnmount } from "vue";

const props = defineProps({
 title: {
 type: String,
 default: "Potvrda brisanja",
 },

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

42

 message: {
 type: String,
 default: "Da li ste sigurni da želite da obrišete stavku?",
 },
 onConfirm: {
 type: Function,
 required: true,
 },
});

const modalElement = ref(null);
let modalInstance = null;

const showModal = () => {
 if (modalInstance) {
 modalInstance.show();
 }
};

const hideModal = () => {
 if (modalInstance) {
 modalInstance.hide();
 }
};

const handleConfirm = () => {
 props.onConfirm();
 hideModal();
};

onMounted(() => {
 modalInstance = new bootstrap.Modal(modalElement.value);
});

onBeforeUnmount(() => {
 if (modalInstance) {
 modalInstance.dispose();
 }
});

defineExpose({ showModal, hideModal });
</script>

<template>
 <div
 class="modal fade"
 ref="modalElement"

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

43

 tabindex="-1"
 aria-labelledby="deleteModalLabel"
 aria-hidden="true"
 >
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <h5 class="modal-title" id="deleteModalLabel">{{ title }}</h5>
 <button
 type="button"
 class="btn-close"
 data-bs-dismiss="modal"
 aria-label="Close"
 ></button>
 </div>
 <div class="modal-body">
 {{ message }}
 </div>
 <div class="modal-footer">
 <button
 type="button"
 class="btn btn-secondary"
 data-bs-dismiss="modal"
 >
 Otkaži
 </button>
 <button type="button" class="btn btn-danger"
@click="handleConfirm">
 Obriši
 </button>
 </div>
 </div>
 </div>
 </div>
</template>

DeleteModal.vue izvorni kod

1. Importovanje

import { ref, defineExpose, onMounted, onBeforeUnmount } from "vue";

• defineExpose dolazi iz Vue.js-a i koristi se da se eksplicitno izlože određene metode
ili promenljive iz jedne komponente, kako bi ih roditeljska komponenta mogla koristiti:

defineExpose({ showModal, hideModal });

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

44

Konkretno u ovom primeru, izložene su funkcije showModal i hideModal, tako da neka
druga komponenta može kontrolisati modal, odnosno da ga prikaže ili sakrije.

• onMounted:

onMounted(() => {
 modalInstance = new bootstrap.Modal(modalElement.value);
});

Konkretno u ovom primeru:
o modalInstance = new bootstrap.Modal(modalElement.value) kreira

novu instancu Bootstrap-ovog modalnog dijaloga.
 modalElement.value je referenca na HTML element koji predstavlja

modal (to je div sa ref="modalElement" u template-u):

<template>
 <div
 class="modal fade"
 ref="modalElement"
 tabindex="-1"
 aria-labelledby="deleteModalLabel"

 new bootstrap.Modal(...) koristi Bootstrap-ovu biblioteku da kreira
instancu modala koja omogućava interakciju s modalom (npr.
otvaranje, zatvaranje, i upravljanje modalnim dijalogom).

• onBeforeUnmount dolazi iz Vue.js-a i koristi se za izvršavanje nekog koda pre nego
što komponenta bude uklonjena sa ekrana. To može biti korisno za čišćenje resursa,
na primer uklanjanje event listener-a ili oslobađanje memorije:

onBeforeUnmount(() => {
 if (modalInstance) {
 modalInstance.dispose();
 }
});

Konkretno u ovom primeru:
o Proverava se da li postoji instanca modala (modalInstance), koja je ranije

kreirana pomoću Bootstrapove metode.
o Ako postoji, poziva se metoda dispose(), koja dolazi iz Bootstrapovog API-

ja. Ova metoda uklanja sve event listenere i druge resurse povezane sa
modalom kako bi se izbeglo curenje memorije.

o Drugim rečima, pozivom dispose() Bootstrap modal se "deaktivira" i uklanjaju
se svi resursi koji su bili potrebni za njegov rad.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

45

2. Props

const props = defineProps({
 title: {
 type: String,
 default: "Potvrda brisanja",
 },
 message: {
 type: String,
 default: "Da li ste sigurni da želite da obrišete stavku?",
 },
 onConfirm: {
 type: Function,
 required: true,
 },
});

• U ovom slučaju, props omogućava da roditeljska komponenta prosledi naslov
(title), poruku (message), i funkciju za potvrdu brisanja (onConfirm) ovoj modalnoj
komponenti.

o title i message imaju unapred definisane vrednosti koje će se koristiti ako ih
roditeljska komponenta ne prosledi.

o onConfirm je funkcija koja je obavezna i koja se mora proslediti kako bi
komponenta radila pravilno. Ova funkcija se poziva kada korisnik potvrdi
brisanje stavke.

3. Promenljive I funkcije

const modalElement = ref(null);
let modalInstance = null;

const showModal = () => {
 if (modalInstance) {
 modalInstance.show();
 }
};

const hideModal = () => {
 if (modalInstance) {
 modalInstance.hide();
 }
};

const handleConfirm = () => {
 props.onConfirm();

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

46

 hideModal();
};

• modalElement: Ovo je ref koji dolazi iz Vue.js-a i koristi se za referenciranje

elementa u DOM-u.
• modalElement se ovde koristi za čuvanje referenci na HTML element modala

(konkretno <div> element koji sadrži Bootstrap modal).
o ref(null): Postavlja inicijalnu vrednost na null, što znači da referenca još nije

postavljena, dok se modal ne prikaže u DOM-u.
o Kasnije, kada je komponenta montirana (onMounted), modalElement će

sadržati referencu na stvarni HTML element modala.

• modalInstance: Ova promenljiva čuva instancu Bootstrap modala, koja se dobija pri
kreiranju modala sa new bootstrap.Modal().

o U početku, vrednost joj je null, jer modal još nije kreiran.
o Kada se komponenta montira (onMounted), modalInstance se kreira i dobija

vrednost stvarne Bootstrap modal instance, što omogućava kontrolu nad
modalom (kao što su metode show(), hide(), dispose()).

• showModal: Ova funkcija se koristi za prikazivanje modala.

o Prvo proverava da li postoji instanca modala (modalInstance).
o Ako postoji, koristi Bootstrap metodu show() koja prikazuje modal.
o Ova funkcija se eksplicitno izlaže kroz defineExpose kako bi roditeljska

komponenta mogla pozvati showModal i tako prikazati modal u određenom
trenutku.

• hideModal: Ova funkcija sakriva modal.
o Slično kao kod showModal, proverava da li postoji instanca modala.
o Ako postoji, poziva se Bootstrap metoda hide(), koja zatvara modal.

• handleConfirm: Ova funkcija se poziva kada korisnik klikne na dugme za potvrdu

brisanja u modalnom prozoru.
o Prvo poziva funkciju props.onConfirm(), koja je prosleđena kao prop iz

roditeljske komponente. Ova funkcija definiše šta će se desiti kada korisnik
potvrdi brisanje (npr. brisanje stavke iz baze).

o Nakon toga, poziva funkciju hideModal() kako bi sakrila modal nakon što
korisnik potvrdi akciju.

4. Primer korišćenja DeleteModal komponente

<script setup>
……
……

import DeleteModal from "@/components/DeleteModal.vue";

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

47

……
……

const predmetToDelete = ref(null);
const confirmModalRef = ref(null);

const confirmDelete = (predmet) => {
 predmetToDelete.value = predmet;
 confirmModalRef.value.showModal();
};

const deletePredmet = async () => {
 try {
 const response = await axios.delete(
 `/api/predmet-brisanje/${predmetToDelete.value.id}`
);
 predmeti.value = predmeti.value.filter(
 (predmet) => predmet.id !== predmetToDelete.value.id
);
 predmetToDelete.value = null;
 toast.success(response.data.message);
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }
};
</script>

<template>
……
……
<button
 @click="confirmDelete(predmet)"
 class="text-danger mx-1 btn btn-link"
 >
……
……
 <DeleteModal
 ref="confirmModalRef"
 :title="'Potvrda brisanja'"
 :message="'Da li ste sigurni da želite da obrišete predmet?'"
 :onConfirm="deletePredmet"
 />
</template>

Predmeti.vue izvorni kod – view za prikaz predmeta

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

48

• Povezanost između confirmModalRef i modalElement:
o confirmModalRef: Ova referenca se koristi u roditeljskoj komponenti za

direktan pristup DeleteModal komponenti. Pomoću confirmModalRef mogu
se pozivati metode unutar DeleteModal komponente, poput showModal() i
hideModal().

o modalElement: Ovo je referenca unutar DeleteModal komponente, gde se
modal (HTML element) povezuje sa Bootstrap modal instancom. Kada se
DeleteModal prikaže, modalElement se koristi da se manipuliše Bootstrap
modal prozorom.

o Kada se u roditeljskoj komponenti pozove
confirmModalRef.value.showModal(), unutar DeleteModal komponente,
metoda showModal() koristi modalElement da prikaže Bootstrap modal
prozor.

• Funkcija confirmDelete:
o Kada korisnik klikne na dugme za brisanje nekog predmeta, funkcija

confirmDelete postavlja predmet koji treba da se obriše u promenljivu
predmetToDelete.

o Zatim, poziva se metoda showModal() na confirmModalRef, što otvara
modalni prozor za potvrdu brisanja.

• Funkcija deletePredmet
o Kada korisnik potvrdi brisanje, funkcija deletePredmet se izvršava.
o Prvo se šalje DELETE zahtev ka API-ju koristeći axios, gde se predmet koji

treba obrisati identifikuje pomoću predmetToDelete.value.id.
o Nakon uspešnog brisanja, predmet se uklanja iz lokalne liste

(predmeti.value) pomoću filter metode.
o Ako je brisanje uspešno, prikazuje se poruka o uspehu koristeći

toast.success(). Ako dođe do greške, prikazuje se odgovarajuća poruka o
grešci.

• DeleteModal props:

<DeleteModal
 ref="confirmModalRef"
 :title="'Potvrda brisanja'"
 :message="'Da li ste sigurni da želite da obrišete predmet?'"
 :onConfirm="deletePredmet"
/>

o title: Ovaj prop se koristi za prikazivanje naslova u modalnom prozoru. U
ovom slučaju, naslov je "Potvrda brisanja".

o message: Ovaj prop definiše poruku unutar modalnog prozora. U ovom
slučaju, poruka je "Da li ste sigurni da želite da obrišete predmet?".

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

49

o onConfirm: Ovaj prop je funkcija koja se izvršava kada korisnik potvrdi akciju
u modalnom prozoru. U ovom slučaju, funkcija deletePredmet se izvršava
kako bi obrisala izabrani predmet

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

50

6. Kreiranje stranica za manipulaciju korisnicima

6.1 views/KorisnikNovi.vue
Potrebno je u folder views kreirati novi fajl I nazvati ga KorisnikNovi.vue. Predstavljaće
stranicu za kreiranje novih korisnika.

<script setup>
import { ref } from "vue";
import axios from "axios";
import { toast } from "vue3-toastify";
import { useRouter } from "vue-router";
import FormContainer from "@/components/FormContainer.vue";

const router = useRouter();

const ime = ref("");
const prezime = ref("");
const email = ref("");
const rola = ref("");
const lozinka = ref("");

const handleSubmit = async (event) => {
 event.preventDefault();
 try {
 const response = await axios.post("/api/korisnik-novi", {
 ime: ime.value,
 prezime: prezime.value,
 email: email.value,
 rola: rola.value,
 lozinka: lozinka.value,
 });
 router.push("/korisnici").then(() =>
toast.success(response.data.message));
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }
};
</script>

<template>
 <FormContainer title="Novi korisnik">
 <form @submit="handleSubmit">
 <div class="mb-3">
 <label for="ime" class="form-label">Ime</label>
 <input
 type="text"
 class="form-control"

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

51

 id="ime"
 v-model="ime"
 required
 />
 </div>

 <div class="mb-3">
 <label for="prezime" class="form-label">Prezime</label>
 <input
 type="text"
 class="form-control"
 id="prezime"
 v-model="prezime"
 required
 />
 </div>

 <div class="mb-3">
 <label for="email" class="form-label">Email</label>
 <input
 type="email"
 class="form-control"
 id="email"
 v-model="email"
 required
 />
 </div>

 <div class="mb-3">
 <label for="rola" class="form-label">Rola</label>
 <select id="rola" class="form-select" v-model="rola" required>
 <option selected disabled value="">Izaberi rolu</option>
 <option value="administrator">Administrator</option>
 <option value="profesor">Profesor</option>
 </select>
 </div>

 <div class="mb-3">
 <label for="lozinka" class="form-label">Lozinka</label>
 <input
 type="password"
 class="form-control"
 id="lozinka"
 v-model="lozinka"
 required
 />
 </div>

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

52

 <button type="submit" class="btn btn-primary">Sačuvaj</button>
 </form>
 </FormContainer>
</template>

KorisnikNovi.vue izvorni kod

10. Importovanje

import FormContainer from "@/components/FormContainer.vue";

• Iz foldera components potrebno je da se uveze FormContainer komponenta koja je
obrađena u prethodnom poglavlju. Ona „omotava“ formu što omogućava
standardizovan izgled i strukturu.

11. Promenljive

const router = useRouter();

const ime = ref("");
const prezime = ref("");
const email = ref("");
const rola = ref("");
const lozinka = ref("");

• ime, prezime, email, rola, lozinka: Reaktivne promenljive koje čuvaju unos
korisnika u odgovarajuća polja. Koristeći v-model direktivu, vrednosti ovih polja se
automatski sinhronizuju sa podacima u formi:

 <input
 type="text"
 class="form-control"
 id="ime"
 v-model="ime"
 required
 />

• router: instanca router-a koja se koristi za navigaciju.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

53

12. Funkcija handleSubmit

const handleSubmit = async (event) => {
 event.preventDefault();
 try {
 const response = await axios.post("/api/korisnik-novi", {
 ime: ime.value,
 prezime: prezime.value,
 email: email.value,
 rola: rola.value,
 lozinka: lozinka.value,
 });
 router.push("/korisnici").then(() =>
toast.success(response.data.message));
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }
};

• handleSubmit: Funkcija koja se poziva pri slanju forme. Ova funkcija:
o Sprečava podrazumevano ponašanje forme (osvežavanje stranice)

korišćenjem event.preventDefault().
o Šalje POST zahtev na /api/korisnik-novi, prosleđujući podatke unesene u formu

(ime, prezime, email, rola, lozinka).
o U slučaju uspešnog odgovora, korisnik se preusmerava na stranicu sa spiskom

korisnika, a notifikacija o uspehu se prikazuje pomoću toast.success.
o Ako dođe do greške, prikazuje se odgovarajuća notifikacija pomoću

toast.error.

13. Props u FormContainer-u

<FormContainer title="Novi korisnik">
 ………
 ………
</FormContainer>

• title: Prikazuje naslov forme (u ovom slučaju "Novi korisnik").
• Ovaj prop olakšava ponovnu upotrebu komponente FormContainer za različite forme

sa različitim naslovima.

14. Registrovanje /korisnik-novi rute

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

54

Potrebno je u fajlu router/index.js registrovati rutu za kreiranje novog korisnika. Kada se
pristupi URL-u: http://localhost:5173/korisnik-novi, učitaće se gorenavedena
KorisnikNovi.vue komponenta. Pored toga, potrebno je implementirati funkciju za rutiranje
koja će proveravati da li korisnik ima odgovarajuću ulogu (rolu) za pristup određenim rutama.
Korisnicima i predmetima može upravljati samo administrator, dok studentima mogu upravljati
i administrator i profesor. Ako korisnik nema odgovarajuću ulogu, biće preusmeren na login
stranicu ili na drugu odgovarajuću rutu.

import { createRouter, createWebHistory } from "vue-router";
import KorisnikNovi from "@/views/KorisnikNovi.vue";
import Login from "@/views/Login.vue";

const routes = [
 {
 path: "/korisnik-novi",
 name: "KorisnikNovi",
 component: KorisnikNovi,
 meta: { requiresRole: ["administrator"] },
 },
 {
 path: "/login",
 name: "Login",
 component: Login,
 },
];

const router = createRouter({
 history: createWebHistory(import.meta.env.BASE_URL),
 routes,
});

router.beforeEach((to, from, next) => {
 const role = localStorage.getItem("rola");

 if (role) {
 if (to.meta.requiresRole && !to.meta.requiresRole.includes(role)) {
 return next("/login");
 }
 } else if (to.meta.requiresRole) {
 return next("/login");
 }

 next();
});

export default router;

router/index.js izvorni kod

http://localhost:5173/korisnik-novi

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

55

• Funkcija router.beforeEach:
o Funkcija router.beforeEach se koristi za presretanje svake navigacije

između ruta. Ona omogućava postavljanje provera i logike pre nego što korisnik
dobije pristup odabranoj ruti. U ovom slučaju, koristi se za proveru da li korisnik
poseduje odgovarajuću rolu. Ako korisnik nema odgovarajuću rolu,
preusmerava se na login stranicu ili na rutu kojoj ima pristup.

• meta: { requiresRole: ["administrator"] }:

o Ovaj meta podatak definiše koja rola ima pristup određenoj ruti. U primeru je
navedeno da samo korisnici sa ulogom "administrator" mogu pristupiti ruti.
Meta podaci se ne izvršavaju direktno, već omogućavaju korišćenje dodatnih
provera unutar router.beforeEach funkcije, gde se provera uloge vrši na
osnovu zahteva određenih u meta.requiresRole.

6.2 views/KorisnikIzmena.vue
Potrebno je u folder views kreirati novi fajl I nazvati ga KorisnikIzmena.vue. Predstavljaće
stranicu za izmenu korisnika.

<script setup>
import { ref, onMounted } from "vue";
import axios from "axios";
import { useRoute } from "vue-router";
import { useRouter } from "vue-router";
import FormContainer from "@/components/FormContainer.vue";
import { toast } from "vue3-toastify";

const router = useRouter();
const route = useRoute();
const id = route.params.id;

const ime = ref("");
const prezime = ref("");
const email = ref("");
const rola = ref("");
const lozinka = ref("");

const fetchKorisnik = async () => {
 try {
 const response = await axios.get(`/api/korisnik/${id}`);
 ime.value = response.data.ime;
 prezime.value = response.data.prezime;
 email.value = response.data.email;
 rola.value = response.data.rola;
 } catch (error) {

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

56

 if (error.response.status == 401) {
 router
 .push("/login")
 .then(() => toast.error(error.response.data.message));
 } else {
 toast.error(error.response.data.message || error.message);
 }
 }
};

const handleSubmit = async (event) => {
 event.preventDefault();
 try {
 const response = await axios.put(`/api/korisnik-izmena/${id}`, {
 ime: ime.value,
 prezime: prezime.value,
 email: email.value,
 rola: rola.value,
 lozinka: lozinka.value,
 });
 router.push("/korisnici").then(() =>
toast.success(response.data.message));
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }
};

onMounted(() => {
 fetchKorisnik();
});
</script>

<template>
 <FormContainer title="Izmena korisnika">
 <form @submit="handleSubmit">
 <div class="mb-3">
 <label for="ime" class="form-label">Ime</label>
 <input
 type="text"
 class="form-control"
 id="ime"
 v-model="ime"
 required
 />
 </div>

 <div class="mb-3">

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

57

 <label for="prezime" class="form-label">Prezime</label>
 <input
 type="text"
 class="form-control"
 id="prezime"
 v-model="prezime"
 required
 />
 </div>

 <div class="mb-3">
 <label for="email" class="form-label">Email</label>
 <input
 type="email"
 class="form-control"
 id="email"
 v-model="email"
 required
 />
 </div>

 <div class="mb-3">
 <label for="rola" class="form-label">Rola</label>
 <select id="rola" class="form-select" v-model="rola" required>
 <option selected disabled value="">Izaberi rolu</option>
 <option value="administrator">Administrator</option>
 <option value="profesor">Profesor</option>
 </select>
 </div>

 <div class="mb-3">
 <label for="lozinka" class="form-label">Lozinka</label>
 <input
 type="password"
 class="form-control"
 id="lozinka"
 v-model="lozinka"
 required
 />
 </div>

 <button type="submit" class="btn btn-primary">Sačuvaj</button>
 </form>
 </FormContainer>
</template>

KorisnikIzmena.vue izvorni kod

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

58

1. Importovanje

import { useRoute } from "vue-router";

• useRoute je funkcija iz Vue Router biblioteke koja omogućava pristup trenutnoj ruti
unutar komponente. Ova funkcija vraća objekat koji sadrži informacije o ruti, kao što
su:

o params: parametri rute, npr. id u ruti /korisnici/:id.
o query: query parametri, npr. u ruti /korisnici?ime=Marko.
o name: naziv rute ako je definisan u routes konfiguraciji.
o path: puna putanja trenutne rute.

2. Promenljive

const router = useRouter();
const route = useRoute();
const id = route.params.id;

const ime = ref("");
const prezime = ref("");
const email = ref("");
const rola = ref("");
const lozinka = ref("");

• ime, prezime, email, rola, lozinka: Reaktivne promenljive koje se koriste za
popunjavanje input polja sa podacima dobijenim sa servera. Koristeći v-model
direktivu, ove vrednosti su povezane sa podacima u formi.

• router i route: Omogućavaju navigaciju između stranica i pristup parametrima u
URL-u (u ovom slučaju id korisnika).

3. Funkcija fetchKorisnik

const fetchKorisnik = async () => {
 try {
 const response = await axios.get(`/api/korisnik/${id}`);
 ime.value = response.data.ime;
 prezime.value = response.data.prezime;
 email.value = response.data.email;
 rola.value = response.data.rola;
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }
 }

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

59

};

• Ova funkcija šalje GET zahtev na /api/korisnik/${id} kako bi dohvatila podatke korisnika
sa servera. Nakon uspešnog odgovora, polja u formi (ime, prezime, email, rola)
se popunjavaju vrednostima koje su dobijene sa servera pomoću ref promenljivih.

4. Funkcija handleSubmit

const handleSubmit = async (event) => {
 event.preventDefault();
 try {
 const response = await axios.put(`/api/korisnik-izmena/${id}`, {
 ime: ime.value,
 prezime: prezime.value,
 email: email.value,
 rola: rola.value,
 lozinka: lozinka.value,
 });
 router.push("/korisnici").then(() =>
toast.success(response.data.message));
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }
};

• Funkcija koja šalje PUT zahtev za izmenu podataka korisnika na osnovu unosa u formi.
U slučaju uspešnog zahteva, korisnik se preusmerava na stranicu sa spiskom
korisnika i prikazuje se notifikacija o uspehu.

5. Props u FormContainer-u

<FormContainer title="Izmena korisnika">
 ………
 ………
</FormContainer>

• title: Prikazuje naslov forme (u ovom slučaju "Izmena korisnika").

6. Registrovanje /korisnik-izmena rute

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

60

Potrebno je u fajlu router/index.js registrovati rutu za izmenu korisnika. Kada se pristupi
URL-u: http://localhost:5173/korisnik-izmena/:id, učitaće se gorenavedena
KorisnikIzmena.vue komponenta. Pored toga, potrebno je da ova ruta bude zaštićena, i da
može da joj pristupi samo korisnik sa ulogom administratora.

import { createRouter, createWebHistory } from "vue-router";
import KorisnikNovi from "@/views/KorisnikNovi.vue";
import KorisnikIzmena from "@/views/KorisnikIzmena.vue";
import Login from "@/views/Login.vue";

const routes = [
 {
 path: "/korisnik-novi",
 name: "KorisnikNovi",
 component: KorisnikNovi,
 meta: { requiresRole: ["administrator"] },
 },
 {
 path: "/korisnik-izmena/:id",
 name: "KorisnikIzmena",
 component: KorisnikIzmena,
 props: true,
 meta: { requiresRole: ["administrator"] },
 },
 {
 path: "/login",
 name: "Login",
 component: Login,
 },
];

const router = createRouter({
 history: createWebHistory(import.meta.env.BASE_URL),
 routes,
});

router.beforeEach((to, from, next) => {
 const role = localStorage.getItem("rola");

 if (role) {
 if (to.meta.requiresRole && !to.meta.requiresRole.includes(role)) {
 return next("/login");
 }
 } else if (to.meta.requiresRole) {
 return next("/login");
 }

http://localhost:5173/korisnik-izmena/:id

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

61

 next();
});

export default router;

router/index.js izvorni kod

• meta: { requiresRole: ["administrator"] }:
o Ovaj meta podatak se dodaje I za rutu /korisnik-izmena/:id, kao I kod stranice

za kreiranje novih korisnika.

6.3 views/Korisnici.vue
Potrebno je u folder views kreirati novi fajl I nazvati ga Korisnici.vue. Predstavljaće stranicu
za prikazivanje svih korisnika.

<script setup>
import { ref, onMounted } from "vue";
import axios from "axios";
import { toast } from "vue3-toastify";
import { useRouter, RouterLink } from "vue-router";
import TableContainer from "@/components/TableContainer.vue";
import DeleteModal from "@/components/DeleteModal.vue";

const korisnici = ref([]);
const korisnikToDelete = ref(null);
const confirmModalRef = ref(null);
const router = useRouter();

const fetchKorisnici = async () => {
 try {
 const response = await axios.get("/api/korisnici");
 korisnici.value = response.data;
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }
};

const confirmDelete = (korisnik) => {
 korisnikToDelete.value = korisnik;
 confirmModalRef.value.showModal();
};

const deleteKorisnik = async () => {
 try {
 const response = await axios.post(

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

62

 `/api/korisnik-brisanje/${korisnikToDelete.value.id}`
);
 korisnici.value = korisnici.value.filter(
 (korisnik) => korisnik.id !== korisnikToDelete.value.id
);
 korisnikToDelete.value = null;
 confirmModalRef.value.hideModal();
 toast.success(response.data.message);
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }
};

onMounted(() => {
 fetchKorisnici();
});
</script>

<template>
 <TableContainer to="/korisnik-novi" buttonText="Dodaj korisnika">
 <template #table-header>
 <tr>
 <th scope="col">Ime</th>
 <th scope="col">Prezime</th>
 <th scope="col">Email</th>
 <th scope="col">Rola</th>
 <th scope="col">Akcija</th>
 </tr>
 </template>
 <template #table-body>
 <tr v-for="korisnik in korisnici" :key="korisnik.id">
 <td>{{ korisnik.ime }}</td>
 <td>{{ korisnik.prezime }}</td>
 <td>{{ korisnik.email }}</td>
 <td>{{ korisnik.rola }}</td>
 <td>
 <button
 @click="router.push(`/korisnik-izmena/${korisnik.id}`)"
 role="button"
 class="text-warning mx-1 btn btn-link"
 >
 <i class="fas fa-edit"></i>
 </button>
 <button
 @click="confirmDelete(korisnik)"
 class="text-danger mx-1 btn btn-link"
 >

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

63

 <i class="fas fa-trash"></i>
 </button>
 </td>
 </tr>
 </template>
 </TableContainer>

 <DeleteModal
 ref="confirmModalRef"
 :title="'Potvrda brisanja'"
 :message="'Da li ste sigurni da želite da obrišete korisnika?'"
 :onConfirm="deleteKorisnik"
 />
</template>

KorisnikIzmena.vue izvorni kod

1. Importovanje

import TableContainer from "@/components/TableContainer.vue";
import DeleteModal from "@/components/DeleteModal.vue";

• TableContainer i DeleteModal su prethodno kreirane komponente koje se koriste
za prikaz tabele korisnika i modala za potvrdu brisanja.

2. Promenljive

const korisnici = ref([]);
const korisnikToDelete = ref(null);
const confirmModalRef = ref(null);
const router = useRouter();

• korisnici: reaktivna promenljiva koja čuva listu svih korisnika.
• korisnikToDelete: koristi se za privremeno skladištenje podataka o korisniku koji će

biti obrisan.
• confirmModalRef: referenca na modal za brisanje korisnika, omogućava prikaz i

skrivanje modala.

3. Funkcija fetchKorisnici

const fetchKorisnici = async () => {
 try {

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

64

 const response = await axios.get("/api/korisnici");
 korisnici.value = response.data;
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }
};

• Ova funkcija šalje GET zahtev na /api/korisnici kako bi preuzela sve korisnike iz baze
podataka. Podaci o korisnicima se zatim smeštaju u reaktivnu promenljivu korisnici.

4. Funkcija confirmDelete

const confirmDelete = (korisnik) => {
 korisnikToDelete.value = korisnik;
 confirmModalRef.value.showModal();
};

• Ova funkcija se poziva kada korisnik klikne na dugme za brisanje. Postavlja korisnika
koji će biti obrisan u promenljivu korisnikToDelete i prikazuje modal za potvrdu
brisanja.

5. Funkcija deleteKorisnik

const deleteKorisnik = async () => {
 try {
 const response = await axios.post(
 `/api/korisnik-brisanje/${korisnikToDelete.value.id}`
);
 korisnici.value = korisnici.value.filter(
 (korisnik) => korisnik.id !== korisnikToDelete.value.id
);
 korisnikToDelete.value = null;
 confirmModalRef.value.hideModal();
 toast.success(response.data.message);
 } catch (error) {
 toast.error(error.response.data.message || error.message);
 }
};

• Ova funkcija šalje POST zahtev na /api/korisnik-brisanje/${korisnikToDelete.value.id}
kako bi obrisala korisnika iz baze. Nakon uspešnog brisanja, korisnik se uklanja iz liste
korisnici, modal se zatvara, a korisnik se informiše o uspešnom brisanju putem toast
notifikacije.

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

65

6. Registrovanje /korisnici rute

Potrebno je u fajlu router/index.js registrovati rutu za prikazivanje. Kada se pristupi URL-
u: http://localhost:5173/korisnici, učitaće se gorenavedena Korisnici.vue komponenta.
Pored toga, potrebno je da ova ruta bude zaštićena, i da može da joj pristupi samo korisnik
sa ulogom administratora.

import { createRouter, createWebHistory } from "vue-router";
import Korisnici from "@/views/Korisnici.vue";
import KorisnikNovi from "@/views/KorisnikNovi.vue";
import KorisnikIzmena from "@/views/KorisnikIzmena.vue";
import Login from "@/views/Login.vue";

const routes = [
 {
 path: "/korisnici",
 name: "Korisnici",
 component: Korisnici,
 meta: { requiresRole: ["administrator"] },
 },
 {
 path: "/korisnik-novi",
 name: "KorisnikNovi",
 component: KorisnikNovi,
 meta: { requiresRole: ["administrator"] },
 },
 {
 path: "/korisnik-izmena/:id",
 name: "KorisnikIzmena",
 component: KorisnikIzmena,
 props: true,
 meta: { requiresRole: ["administrator"] },
 },
 {
 path: "/login",
 name: "Login",
 component: Login,
 },
];

const router = createRouter({
 history: createWebHistory(import.meta.env.BASE_URL),
 routes,
});

router.beforeEach((to, from, next) => {
 const role = localStorage.getItem("rola");

http://localhost:5173/korisnici

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

66

 if (role) {
 if (to.meta.requiresRole && !to.meta.requiresRole.includes(role)) {
 return next("/login");
 }
 } else if (to.meta.requiresRole) {
 return next("/login");
 }

 next();
});

export default router;

router/index.js izvorni kod

• meta: { requiresRole: ["administrator"] }:
o Ovaj meta podatak se dodaje I za rutu /korisnici

Klijent server sistemi - Uputstvo za izradu projekta u Vue.js radnom okviru

67

LITERATURA

[1] https://vuejs.org/guide/introduction.html

[2] https://www.w3schools.com/vue/index.php

[3] https://github.com/bradtraversy/vue-crash-2024

[4] https://getbootstrap.com/docs/5.3/getting-started/introduction/

[5] https://fontawesome.com/

https://vuejs.org/guide/introduction.html
https://www.w3schools.com/vue/index.php
https://github.com/bradtraversy/vue-crash-2024
https://getbootstrap.com/docs/5.3/getting-started/introduction/
https://fontawesome.com/

	Cilj izrade projekta
	Vue.js radni okvir
	1. Inicijalizacija, konfiguracija projekta i instalacija biblioteka
	1.1 Koraci za konfiguraciju projekta

	2. Princip rada Vue.js-a
	2.1 Glavne komponente i objašnjenje strukture u Vue.js projektu

	3. Klijent server arhitektura
	3.1 Pojam API-ja
	3.2 Pojam Autentifikacije
	3.2.1 Autentifikacija kolačićima (engl. Cookie authentication)
	3.2.2 JWT Autentifikacija (engl. JSON Web Token authentication)

	3.3. Pojam autorizacije

	4. Izrada aplikacije
	4.1 Izgled aplikacije, stranice i rute
	4.2 Razdvajanje u komponente

	5. Kreiranje komponenti i stranice za login
	5.1 views/Login.vue
	5.2 components/Navbar.vue
	5.3 components/TableContainer.vue
	5.4 components/FormContainer.vue
	5.5 components/DeleteModal.vue

	6. Kreiranje stranica za manipulaciju korisnicima
	6.1 views/KorisnikNovi.vue
	6.2 views/KorisnikIzmena.vue
	6.3 views/Korisnici.vue

	LITERATURA

